Skip to main content
Log in

Random complex zeroes, II. Perturbed lattice

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We show that the flat chaotic analytic zero points (i.e. zeroes of a random entire function\(\psi (z) = \sum {_{k = 0}^\infty \zeta } k\frac{{z^k }}{{\sqrt {k!} }}\) where ζ0, ζ1, … are independent standard complex-valued Gaussian variables) can be regarded as a random perturbation of a lattice in the plane. The distribution of the distances between the zeroes and the corresponding lattice points is shift-invariant and has a Gaussian-type decay of the tails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Aharoni,Infinite matching theory, Discrete Mathematics95 (1991), 5–22.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Ajtai, J. Komlós and G. Tusnády,On optimal matchings, Combinatorica4 (1984), 259–264.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Bleher, B. Shiffman and S. Zelditch,Poincaré-Lelong approach to universality and scaling of correlations between zeros, Communications in Mathematical Physics208 (2000), 771–785.

    Article  MATH  MathSciNet  Google Scholar 

  4. N. Dunford and J. Schwartz,Linear Operators. Part I. General Theory, Interscience, New York, 1958.

    Google Scholar 

  5. J. H. Hannay,Chaotic analytic zero points: exact statistics for those of a random spin state, Journal of Physics. A. Mathematical and General29 (1996), L101-L105.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Hoffman, A. E. Holroyd and Y. Peres,A stable marriage of Poisson and Lebesgue, arXiv:math.PR/0505668.

  7. A. E. Holroyd and Y. Peres,Extra heads and invariant allocations, Annals of Probability33 (2005), 31–52.

    Article  MATH  MathSciNet  Google Scholar 

  8. L. Hörmander,The Analysis of Linear Partial Differential Operators, Vol. I, Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin, 1983.

    Google Scholar 

  9. J. Moser,On the volume elements on a manifold, Transactions of the American Mathematical Society120 (1965), 286–294.

    Article  MATH  MathSciNet  Google Scholar 

  10. Y. Peres and B. Virag,Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process, Acta Mathematica, to appear. arXiv:math.PR/0310297.

  11. M. Sodin and B. Tsirelson,Random complex zeroes, I. Asymptotic normality, Israel Journal of Mathematics144 (2004), 125–149.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Sodin and B. Tsirelson,Random complex zeroes, III. Decay of the hole probability, Israel Journal of Mathematics147 (2005), 371–379.

    MATH  MathSciNet  Google Scholar 

  13. S. M. Srivastava,A Course on Borel Sets, Springer-Verlag, Berlin, 1998.

    MATH  Google Scholar 

  14. M. Talagrand,Matching theorems and empirical discrepancy computations using majorizing measures, Journal of the American Mathematical Society7 (1994), 455–537.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Sodin.

Additional information

Supported by the Israel Science Foundation of the Israel Academy of Sciences and Humanities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sodin, M., Tsirelson, B. Random complex zeroes, II. Perturbed lattice. Isr. J. Math. 152, 105–124 (2006). https://doi.org/10.1007/BF02771978

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02771978

Keywords

Navigation