Skip to main content
Log in

Mechanics of porcine coronary arteriesex vivo employing impedance planimetry: A new intravascular technique

  • Methodological and Technical Reports
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Our objective was to evaluate methodological aspects of impedance planimetry, a new balloon catheter-based technique, for the investigation of coronary artery mechanical wall properties. We used a four ring-electrode electrical impedance measuring system that was located inside a balloon. Two of the electrodes were used for excitation and connected to a generator producing a constant alternating current of 250 mA at 5 kHz. The other two electrodes for detection were placed midway between the excitation electrodes. The balloon was distended with electrically conducting fluid through an infusion channel. The vessel cross-sectional area (CSA) was measured according to the field gradient principle by measuring the impedance of the fluid inside the balloon. Impedance planimetry was applied in the three major branches of the coronary arteries of seven extracted porcine hearts to assess luminal CSAs in response to internal pressurization. The biomechanical wall properties were evaluated by computing the strain [(rr 0r 0 −1, wherer is the vessels inner radius computed as (CSA · π−1)½ andr 0 is the radius of the vessel at a minimal distension pressure], the tension [(r·dP), wheredP is the transmural pressure difference], and the pressure elastic modulus (ΔP·r·Δr −1). We found thatin vitro testing demonstrated that impedance planimetry was accurate and reproducible. The technique has controllable sources of crror. Measurements were performed with consecutively increasing pressures in the range 1–25 kPa (8–188 mmHg, 0.01–0.25 atm). The CSAs increased nonlinearly and were significantly larger in the left anterior descendent coronary artery (LAD) (1 kPa, mean 5.0 mm2; 25 kPa, mean 21.8 mm2) than in both the left circumflex (Cx) (4.5–16.0 mm2) and the right coronary artery (RCA) (2.8–15.6 mm2) (analysis of variance,P<0.001 for both). The circumferential wall tension-strain relation showed exponential behavior. For a given strain, tension values for LAD were significantly lower than those of Cx (P<0.01). The pressure elastic modulus-strain relation also was exponential, and values for Cx were significantly lower than values for LAD (P<0.001) and RCA (P<0.05). Impedance planimetry was applied to the study of coronary artery biomechanicsex vivo. The LAD had the largest CSA, and the Cx was the least compliant. Methodological aspects of anin vivo introduction of the method require additional evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfonso, F., C. Macaya, J. Goicolea, R. Hernandez, J. Segovia, J. Zamorano, C. Bañuelos, and P. Zarco. Determinants of coronary compliance in patients with coronary artery disease: An intravascular ultrasound study.J. Am. Coll. Cardiol. 23:879–884, 1994.

    PubMed  CAS  Google Scholar 

  2. Ardissino, D., S. Di Somma, J. Kubica, P. Barberis, P. A. Merlini, E. Eleuteri, S. De Servi, E. Bramucci, G. Specchia, and C. Montemartini. Influence of elastic recoil on restenosis after successful coronary angioplasty in unstable angina pectoris.Am. J. Cardiol. 71:659–663, 1993.

    Article  PubMed  CAS  Google Scholar 

  3. Bergel, D. H. The properties of blood vessels. In:Biomechanics: Its foundations and objectives. Englewood Cliffs, NJ: Prentice-Hall, 1972, pp. 105–139.

    Google Scholar 

  4. Botas, J., D. A. Clark, F. Pinto, A. Chenzbraun, and T. A. Fischell. Balloon angioplasty results in increased segmental coronary distensibility: A likely mechanism of percutaneous transluminal coronary angioplasty.J. Am. Coll. Cardiol. 23:1043–1052, 1994.

    Article  PubMed  CAS  Google Scholar 

  5. Cox, R. H. Passive mechanics and connective tissue composition of canine arteries.Am. J. Physiol. 234:H533-H541, 1978.

    PubMed  CAS  Google Scholar 

  6. Cox, R. H. Mechanical properties of the coronary vascular wall and the contractile process. In: The coronary artery. London: Croom Helm Ltd., 1982, pp 59–90.

    Google Scholar 

  7. Dixon, W. J. BMDP statistical software manual. Los Angeles: University of California Press, 1992, 1499 pp.

    Google Scholar 

  8. Dobrin, P. B. Mechanical properties of arteries.Physiol. Rev. 58:397–459, 1978.

    PubMed  CAS  Google Scholar 

  9. Dupouy, P., H. J. Geschwind, G. Pelle, D. Gallot, and J. L. Dubois Rande. Assessment of coronary vasomotion by intracoronary ultrasound.Am. Heart J. 126:76–85, 1993.

    Article  PubMed  CAS  Google Scholar 

  10. Farrar, D. J., H. D. Green, W. D. Wagner, and M. G. Bond. Reduction in pulse wave velocity and imporvement of aortic distensibility accompanying regression of atherosclerosis in the rhesus monkey.Circ. Res. 47:425–432, 1980.

    PubMed  CAS  Google Scholar 

  11. Fung, Y. C.Biomechanics: motion, flow, stress, and growth. New York. Springer-Verlag, 1990, 569 pp.

    Google Scholar 

  12. Gow, B. S. Circulatory correlates: vascular impedance, resistance, and capacity.Handbook of physiology. Bethesda, MD: American Physiological Society, 1980, pp. 353–408.

    Google Scholar 

  13. Gow, B. S., and C. D. Hadfield. The elasticity of canine and human coronary arteries with reference to postmortem changes.Circ. Res. 45:588–594, 1979.

    PubMed  CAS  Google Scholar 

  14. Gregersen, H., and M. B. Andersen. Impedance measuring system for quantification of cross-sectional area in the gastrointestinal tract.Med. Biol. Eng. Comput. 29:108–110, 1991.

    Article  PubMed  CAS  Google Scholar 

  15. Gregersen, H., K. Kraglund, and J. C. Djurhuus. Variations in duodenal cross-sectional area during the interdigestive migrating motility complex.Am. J. Physiol. 259:G26-G31, 1990.

    PubMed  CAS  Google Scholar 

  16. Gregersen, H., K. Orvar, and J. Christensen. Biomechanical properties of duodenal wall and duodenal tone during phase I and phase II of the MMC.Am. J. Physiol. 263:G795-G801, 1992.

    PubMed  CAS  Google Scholar 

  17. Gregersen, H., H. Stodkilde Jorgensen, J.C. Djurhuus, and S. O. Mortensen. The four-electrode impedance technique: a method for investigation of compliance in luminal organs.Clin. Phys. Physiol. Meas. 9 Suppl A:61–64, 1988.

    Article  PubMed  Google Scholar 

  18. Harris, J. H., E. E. Therkelsen, and N. R. Zinner. Electrical measurements of ureteral flow. In:Urodynamics. London. Academic Press, 1971, pp. 465–472.

    Google Scholar 

  19. Iseri, L. T., and J. H. French. Magnesium: nature's physiologic calcium blocker.Am. Heart J. 108:188–193, 1984.

    Article  PubMed  CAS  Google Scholar 

  20. Lee, R. T., and R. D. Kamm. Vascular mechanics for the cardiologist.J. Am. Coll. Cardiol. 23:1289–1295, 1994.

    PubMed  CAS  Google Scholar 

  21. Lose, G., H. Colstrup, K. Saksager, and J. K. Kristensen. New probe for measurement of related values of cross-sectional area and pressure in a biological tube.Med. Biol. Eng. Comput. 24:488–492, 1986.

    Article  PubMed  CAS  Google Scholar 

  22. MacAlpin, R. N., A. S. Abbasi, J. H. Grollman, Jr., and L. Eber. Human coronary artery size during life. A cinearteriographic study.Radiology. 108:567–576, 1973.

    PubMed  CAS  Google Scholar 

  23. Megerman, J., J. E. Hasson, D. F. Warnock, G. J. L'Italien, and W. M. Abbott. Noninvasive measurements of nonlinear arterial elasticity.Am. J. Physiol. 250:H181-H188, 1986.

    PubMed  CAS  Google Scholar 

  24. Mortensen, S., J. C. Djurhuus, and H. Rask Andersen. A system for measurements of micturition urethral cross-sectional areas and pressures.Med. Biol. Eng. Comput. 21: 482–488, 1983.

    Article  PubMed  CAS  Google Scholar 

  25. Ohman, E. M., J. F. Marquis, D. R. Ricci, R. I. Brown, M. L. Knudtson, D. J. Kereiakes, J. K. Samaha, J. R. Margolis, A. L. Niederman, L. S. Dean,et al. A randomized comparison of the effects of gradual prolonged versus standard primary balloon inflation on early and late outcome. Results of a multicenter clinical trial. Perfusion Balloon Catheter Study Group.Circulation. 89:1118–1125, 1994.

    PubMed  CAS  Google Scholar 

  26. Pagani, M., I. Mirsky, H. Baig, W. T. Manders, P. Kerkhof, and S. F. Vatner: Effects of age on aortic pressure-diameter and elastic stiffness-stress relationships in unanesthetized sheep.Circ. Res. 44:420–429, 1979.

    PubMed  CAS  Google Scholar 

  27. Patel, D. J., and J. S. Janicki. Static elastic properties of the left coronary circumflex artery and the common carotid artery in dogs.Circ. Res. 27:149–158, 1970.

    PubMed  CAS  Google Scholar 

  28. Remington, J. W. Hysteresis loop behavior of the aorta and other extensible tissues.Am. J. Physiol. 180:83–95, 1955.

    PubMed  CAS  Google Scholar 

  29. Turlapaty, P. D., and B. M. Altura. Extracellular magnesium ions control calcium exchange and content of vascular smooth muscle.Eur. J. Pharmacol. 52:421–423, 1978.

    Article  PubMed  CAS  Google Scholar 

  30. Vatner, S. F., A. Pasipoularides, and I. Mirsky. Measurement of arterial pressure-dimension relationships in conscious animals.Ann. Biomed. Eng. 12:521–534, 1984.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frøbert, O., Gregersen, H. & Bagger, J.P. Mechanics of porcine coronary arteriesex vivo employing impedance planimetry: A new intravascular technique. Ann Biomed Eng 24 (Suppl 1), 148–155 (1995). https://doi.org/10.1007/BF02771003

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02771003

Keywords

Navigation