Skip to main content
Log in

Three-dimensional reconstruction of the flow in a human left heart by using magnetic resonance phase velocity encoding

  • Methodological and Technical Reports
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Intraventricular flows have been correlated with disease and are of interest to cardiologists as a possible means of diagnosis. This study extends a method that use magnetic resonance (MR) to measure the three-dimensional nature of these flows. Four coplanar sagittal MR slices were located that spanned the left ventricle of a healthy human. All three velocity components were measured in each slice and 18 phases were obtained per beat. With use of the MR magnitude images, masks were created to isolate the velocity data within the heart. These data were read into the software package. Data Visualizer, and the data from the four slices were aligned so as to reconstruct the three-dimensional volume of the left ventricle and atrium. By representing the velocity in vectorial form, the three-dimensional intraventricular flow field was visualized. This revealed the presence of one large line vortex in the ventricle during late diastole but a more ordered flow during early diastole and systole. In conclusion, the use of MR velocity acquisition is a suitable method to obtain the complex intraventricular flow fields in humans and may lead to a better understanding of the importance of these flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Back, L. H., D. G. Gordon, D. C. Ledbetter, R. H. Selzer, and D. W. Crawford. Dynamical relations for left ventricular ejection: Flow rate, momentum, force and impulse.J. Biomech. Eng. 106:54–61, 1984.

    Article  PubMed  CAS  Google Scholar 

  2. Beppu, S., S. Izumi, K. Miyatake, S. Nagata, Y.-D. Park, H. Sakakibara, and Y. Nimura. Abnormal blood pathways in left ventricular cavity in acute myocardial infarction.Circulation 78(1):157–165, 1987.

    Google Scholar 

  3. Bot, H., J. Verburg, B. J. Delemarre, and J. Strackee. Determinants of the occurrence of vortex rings in the left ventricle during diastole.J Biomechanics 23(6):607–615, 1990.

    Article  CAS  Google Scholar 

  4. Delemarre, B. J., H. Bot, C. A. Visser, and A. J. Dunning. Pulsed Doppler echocardiographic description of a circular flow pattern in spontaneous left ventricular contrast.J. Am. Soc. Echocardiogr. 1(2):114–118, 1988.

    PubMed  CAS  Google Scholar 

  5. Delemarre, B. J., C. A. Visser, H. Bot, and A. J. Dunning. Prediction of apical thrombus formation in acute myocardial infarction based on left ventricular spatial flow pattern.J. Am. Coll Cardiol. 15(2):355–360, 1990.

    PubMed  CAS  Google Scholar 

  6. Delemarre, B. J., C. A. Visser, H. Bot, H. J. D. Koning, and A. J. Dunning. Predictive value of pulsed Doppler echocardiography in acute myocardial infarction.J. Am. Soc. Echocardiogr. 2(2):102–109, 1989.

    PubMed  CAS  Google Scholar 

  7. Firmin, D., G. L. Naylor, R. H. Klipstein, S. R. Underweed, R. S. O. Rees, and D. B. Longmore.In-vivo validation of MR velocity imaging.J. Comp. Assist. Tomgr. 11(5):751–756, 1987.

    Article  CAS  Google Scholar 

  8. Garrahy, P. J., O. L. Kwan, D. C. Booth, and A. N. DeMaria. Assessment of abnormal systolic intraventricular flow patterns by Doppler imaging in patients with left ventricular dyssynergy.Circulation 82(1):95–104, 1990.

    PubMed  CAS  Google Scholar 

  9. Georgiadis, J. G., M. Wang, and A. Pasipoularides. Computational fluid dynamics of left ventricular ejection.Ann. Biomed. Eng. 20:81–97, 1992.

    Article  PubMed  CAS  Google Scholar 

  10. Jacobs, L. E., M. N. Kotler, and W. R. Parry. Flow patterns in dilated cardiomyopathy: a pulsed-wave and color flow Doppler study.J. Am. Soc. Echocardiogr. 3(4):294–302, 1990.

    PubMed  CAS  Google Scholar 

  11. Lanzer, P., W. McKibbin, D. Bohning, B. Thorn, G. Gross, G. Cranney, N. Nada, and G. Pohost. Aortic iliac imaging by projection phase sensitive MR angiography: effects of triggering and timing of data acquisition on image quality.Magn. Reson. Imaging 8:107–116, 1990.

    Article  PubMed  CAS  Google Scholar 

  12. Matsuda, R., K. Shimizu, T. Sakurai, A. Fujita, H. Ohara, S. Okamura, S. Hashimoto, S. Tamaki, and C. Kawai. Measurement of aortic blood flow with MR imaging: comparative study with Doppler US.Radiology 162:857–861, 1987.

    PubMed  CAS  Google Scholar 

  13. McQueen, D. M., and C. S. Peskin. A three-dimensional computational method for blood flow in the heart.J. Comput. Phys. 81(2):372–395, 1989.

    Article  Google Scholar 

  14. Meier, D., S. Maier, and P. Boesiger. Quantitative flow measurements on phantoms and on blood vessels with MR.Magn. Reson. Med. 8:25–34, 1988.

    Article  PubMed  CAS  Google Scholar 

  15. Mikell, F. L., R. W. Asinger, K. J. Elsperger, W. R. Anderson, and M. Hodges. Regional stasis of blood in the dysfunctional left ventricle: echocardiographic detection and differentiation from early thrombosis.Circulation 66(4): 755–763, 1982.

    PubMed  CAS  Google Scholar 

  16. Morvan, D., F. Cassot, and R. Pelissier. Simulation numerique do l'ecoulement intraventriculaire par une methode particulaire J. Mecanique Theorique Appliquee 6(4):489–509, 1987.

    Google Scholar 

  17. Pelle, G., J. Ohayon, and C. Oddou. Trends in cardiac dynamics: towards coupled models of intracavity fluid dynamics and deformable wall mechanics.J. Physics III 4: 1121–1127, 1994.

    Google Scholar 

  18. Peskin, C. S., and D. M. McQueen. Modeling prosthetic heart valves for numerical analysis of blood flow in the heart.J. Comput. Phys. 37(1):113–132, 1980.

    Article  Google Scholar 

  19. Ridgeway, J. P., and M. A. Smith. A technique for velocity imaging using magnetic resonance imaging.Br. J. Radiol. 59:603–607, 1986.

    Google Scholar 

  20. Schoephoerster, R. T., C. L. Silva, and G. Ray. Finite analytic model for left ventricular systolic flow dynamics.J. Eng. Mech. 119(4):733–747, 1993.

    Article  Google Scholar 

  21. Schoephoerster, R. T., C. L. Silva, and G. Ray. Evaluation of left ventricular function based on simulated systolic flow dynamics computed from regional wall motion.J. Biomech. 27(2):125–136, 1994.

    Article  PubMed  CAS  Google Scholar 

  22. Stugaard, M., O. A. Smiseth, C. Risoe, and H. Ihlen. Intraventricular early diastolic filling during acute myocardial ischemia: assessment by multigated color M-mode Doppler echocardiography.Circulation 88(6):2705–2713, 1993.

    PubMed  CAS  Google Scholar 

  23. Sun, Y., D. O. Hearshen, G. W. Rankin, and A. M. Haggar. Comparison of velocity-encoded MR imaging and fluid dynamic modeling of staedy and disturbed flow.J. Magn. Reson. Imaging 2:443–452, 1992.

    Article  PubMed  CAS  Google Scholar 

  24. Taylor, T. W., H. Okino, and T. Yamaguchi. Three-dimensional analysis of left ventricular ejection using computational fluid dynamics.J. Biomech. Eng. 116:127–130, 1994.

    PubMed  CAS  Google Scholar 

  25. Walker, P. G., G. B. Cranney, M. B. Scheidegger, G. Waseleski, G. M. Pohost, and A. P. Yoganathan. A semiautomated method for noise reduction and background phase error correction in NMR phase velocity data.J. Magn. Reson. Imaging 3:521–530, 1993.

    Article  PubMed  CAS  Google Scholar 

  26. Walker, P. G., S. Oyre, E. M. Pedersen, A. P. Yoganthan. The accuracy of MR phase encoding measurements downstream of a mechanical heart valve: a comparison with LDA (Abstract). 12th Annual Meeting, Society of Magnetic Resonance Imaging, New York, 1993.

  27. Walker, P. G., E. M. Pedersen, S. Oyre, L. Flepp, S. Ringgaard, R. S. Heinrich, S. P. Walton, J. M., Hasenkam, H. S. Jorgensen, and A. P. Yoganathan. Magnetic resonance velocity imaging: a new method for prosthetic heart valve study.J. Heart Valve Dis. 4:296–307, 1995.

    PubMed  CAS  Google Scholar 

  28. Yoganathan, A. P., J. D. Lemmon, Y. H. Kim, P. G. Walker, R. A. Levine, and C. C. Vesier. A computational study of a thin-walled 3D left ventricle during early systole.J Biomech. Eng. 116:307–314, 1994.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, P.G., Cranney, G.B., Grimes, R.Y. et al. Three-dimensional reconstruction of the flow in a human left heart by using magnetic resonance phase velocity encoding. Ann Biomed Eng 24 (Suppl 1), 139–147 (1995). https://doi.org/10.1007/BF02771002

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02771002

Keywords

Navigation