Skip to main content
Log in

A visualization-based analysis method for multiparameter models of capillary tissue-exchange

  • Methodological and Technical Reports
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In order to successfully use a model for parameter identification, it must be carefully analyzed. Current analysis methods, however, are ad hoc and provide only partial information. We extended these methods through the application of stacked dimensions, a scientific visualization method. The end result of our extensions are multi-dimensional parametric model-images. These images depict a model as a function of all its parameters in a single graphic. We applied parametric model-images to model verification (behavioral analysis), sensitivity analysis, and identifiability analysis. We applied our methodology to the evaluation of pulmonary vascular capillary-transport models. Results have shown that the visualization-based method provides a more complete view of a model’s behavior and its other characteristics. Furthermore, our method has also proven to be more computationally efficient than the traditional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, L. A., and P. L. Brezonik. Dynamic model of inlake alkalinity generation.Water Resources Res. 24:65–74, 1988.

    Article  CAS  Google Scholar 

  2. Bates, D. M., and D. G. Watts.Non-Linear Regression Analysis and its Applications. New York: John Wiley and Sons, 1988, 365 pp.

    Google Scholar 

  3. Beck, T. J., and K. T. Arnold.Parameter Estimation in Engineering and Science. New York: Wiley, 1977, 273 pp.

    Google Scholar 

  4. Bellman, R., and K. J. Astrom. On structural identifiability.Math. Biosci. 7:329–339, 1970.

    Article  Google Scholar 

  5. Bellman, R., and R. Roth.Quasiliniearization and the Identification Problem. Singapore: Lee Printing Co., 1983, 207 pp.

    Google Scholar 

  6. Beshers, C., and S. Feiner. Automated design of virtual worlds for visualizing multivariate relations. IEEE Conference on Visualization, Boston, Oct. 1992: pp. 283–290.

  7. Courdesses, M., M. P. Polis, and M. Amouroux. On identifiability of parameters in a class of parabolic distributed systems.IEEE Trans. Automatic Control 26:474–477, 1981.

    Article  Google Scholar 

  8. Cusumano, J. P., and D. Lin. Global sensitivity analysis of a nonlinear system using animated basins of attraction.Comp. Phys. 6:647–655, 1992.

    Article  Google Scholar 

  9. Claudio, C., and J. J. Distefano, III. Parameter and structural identifiability concepts and ambiguities: a critical review and analysis.Am. J. Physiol. 239:R7-R24, 1980.

    Google Scholar 

  10. Delforge, J. Relations between the main approaches to linear system identifiability: application to calculation of Jacobean matrices' determinants.Int. J. Systems Sci. 20:1079–1097, 1989.

    Article  Google Scholar 

  11. Doctor, P. G. Sensitivity and uncertainty analysis for performance assessment modeling.Eng. Geol. 26:411–429, 1989.

    Article  Google Scholar 

  12. Doucet, P., and P. B. Sloep.Mathematical Modeling in the Life Sciences. Chichester, England: Ellis Horwood Limited, 1992, 490 pp.

    Google Scholar 

  13. Eisen, M.Mathematical Methods and Models in the Biological Sciences (volume 1). Englewood Cliffs, NJ: Prentice-Hall, 1988, 697 pp.

    Google Scholar 

  14. Fassois, S. D., K. F. Eman, and S. M. Wu. Sensitivity analysis of the discrete-to-continuous dynamic system transformation: measurement and control.Trans. ASME 112:1–9, 1989.

    Google Scholar 

  15. Frank, P. M.Introduction to System Sensitivity Theory. New York: Academic Press, 1978, 386 pp.

    Google Scholar 

  16. Harris, T. R., and R. J. Roselli. Exchange of small molecules in the normal and abnormal lung circulatory bed. In:Respiratory Physiology: an analytical approach. New York: Marcel Dekker, 1989, pp. 737–797.

    Google Scholar 

  17. Haselton, F. R., R. J. Roselli, R. E. Parker, and T. R. Harris. An effective-diffusivity model of pulmonary capillary exchange: general theory, limiting cases, and sensitivity analysis.Math. Biosci. 70:237–63, 1984.

    Article  Google Scholar 

  18. Kitamura, S., and S. Nakagiri. Identifiability of spatially-varying and constant parameters in distributed systems of parabolic type.SIAM J. Control Optimization 15:785–802, 1977.

    Article  Google Scholar 

  19. Konikow, F. L., and J. W. Mercer. Groundwater flow and transport modeling.J. Hydrol. 100:379–409, 1988.

    Article  CAS  Google Scholar 

  20. Lahouaoula, A. Identifiability and identification of linear distributed systems via double general orthogonal polynomials.Int. J. Control 46:1771–1782, 1987.

    Article  Google Scholar 

  21. LeBlanc, J., O. M. Ward, and N. Wittels. Exploringn-dimensional databases. IEEE Conference on Visualization, Oct. 1990, pp. 230–237.

  22. Lecourtier, Y., F. Lamnabhi-Lagarrique, and A. A. Walter. Method to prove that nonlinear models can be unidentifiable. Proceeding of the 26th IEEE conference on Decision and Control, Los Angeles, 1987, pp. 2144–2145.

  23. Nearing, M. A., D. I. Page, J. R. Simanton, and L. J. Lane. Determining erodability parameters from rangeland field data for a process-based erosion model.Transactions of the ASAE 32:919–924, 1989.

    Google Scholar 

  24. Nicholson, H.Modeling of Dynamical Systems (volume 1). Exeter, England: Wheaton & Co., 1980, 182 pp.

    Google Scholar 

  25. Nielson, G. M., T. A. Foley, B. Haman, and D. Lane. Visualizing and modeling scattered multivariate data.IEEE Comp. Graphics Appl., May:47–55, 1991.

    Article  Google Scholar 

  26. Norton, J. P.An Introduction to Identification. New York: Academic Press, 1986, 310 pp.

    Google Scholar 

  27. Pickett, R. M., H. Levkowitz, and S. Seltzer. Integrated displays of multiparameter and multimodality images. First Conference on Biomedical Visualization, Atlanta, 1990, pp. 58–65.

  28. Ribarsky, W. Navigating the data flood.BYTE 18:129–135, April 1993.

    Google Scholar 

  29. Rowlett, R. D., and T. R. Harris. Comparative study of organ models and numerical methods for the evaluation of capillary permeability from multiple-indicator data.Math. Biosci. 29:273–98, 1976.

    Article  Google Scholar 

  30. Saccomani, M. P., and C. Cobelli. A model of leucine kinetics: apriori identifiability and minimal input-output configuration. IFAC 11th Triennial World Congress, Tallinn, Estonia, 1990, pp. 225–229.

  31. Sangren, W. C., and C. W. Sheppard. A mathematical derivation of the exchange of a labeled substance between a liquid flowing in a vessel and an external compartment.Bull. Math. Biophys. 15:387–94, 1953.

    Article  CAS  Google Scholar 

  32. Scales, L. E.Introduction to Non-Linear Optimization. New York: Springer-Verlag, 1985, 243 pp.

    Google Scholar 

  33. Springmeyer, R. R., M. M. Blattner, and L. N. Max, A characterization of the scientific data analysis process. IEEE Conference on Visualization, Boston, 1992, pp. 235–242.

  34. Tomovic, R., and M. Vukobratovic.General Sensitivity Theory. New York: Elsevier Publishing Co., 1970, 258 pp.

    Google Scholar 

  35. Travis, C. C., and L. W. White. Parameter identification of distributed parameter systems.Math. Biosci. 77:341–352, 1985.

    Article  Google Scholar 

  36. Vajda, S., and H. Rabitz. State isomorphism approach to global identifiability of non-linear systems.IEEE Trans. on Automatic Control 34:220–223, 1989.

    Article  Google Scholar 

  37. Vera, D. R., P. O. Scheibe, K. A. Krohn, W. L. Trudeau, and R. C. Stadalnik. Goodness-of-fit and local identifiability of a receptor-binding radiopharmacokinetic system.IEEE Trans. on Biomed. Eng. 39:356–367, 1992.

    Article  CAS  Google Scholar 

  38. Modeling in biomedical research: an assessment of current and potential approaches. Report of NIH. Conference, May 1–3, pp. 21, 1989, 40 pp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosan, S., Harris, T.R. A visualization-based analysis method for multiparameter models of capillary tissue-exchange. Ann Biomed Eng 24 (Suppl 1), 124–138 (1995). https://doi.org/10.1007/BF02771001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02771001

Keywords

Navigation