Skip to main content
Log in

Dynamic tension of a cylindrical specimen with circumferential crack

  • Published:
Materials Science Aims and scope

Abstract

We describe a method for the evaluation of the dynamic stress intensity factors under the action of dynamic loading. The method is based on the solution of the problem of limiting equilibrium for a cylindrical specimen of finite dimensions containing a circumferential crack. In the process of solution, we use the experimental load-time diagram. We establish a simple formula for the evaluation of the dynamic stress intensity factors depending on the history of loading of the specimen. The obtained results serve as a basis of an experimental procedure of determination of the crack-growth resistance of materials. The results of specially performed experimental investigations confirm the efficiency of the proposed formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.E. Andreikiv and I. V. Rokach. “A simplified method for the determination of the time dependence of the stress intensity factor in testing beam specimens for support-free impact bending.”Fiz.-Khim. Mekh. Mater..25. No. 5. 42–51 (1989).

    Google Scholar 

  2. I. V. Rokach. “A simplified method for the determination of the time dependence of the dynamic stress intensity factor in testing beam specimens for three-point impact bending,”Fiz.-Khim. Mekh. Mater..26. No. 3. 79–83 (1990).

    Google Scholar 

  3. O. C. Zienkiewich,The Finite Element Method in Engineering Science, McGraw-Hill. London (1971).

    Google Scholar 

  4. V. Z. Parton and V. G. Boriskovskii.Dynamic Fracture Mechanics [in Russian], Mashinostroenie. Moscow (1985).

    Google Scholar 

  5. G. E. Nash, “An analysis of the forces and bending moments generated during the notched beam impact test,”Eng. Fract. Mech..5. 269–285(1969).

    Google Scholar 

  6. V. G. Boriskovskii and V. Z. Parton, “Numerical analysis of the intensity factors in a square plate with central crack under vibration loading by the finite-element method.” in:Improvement of the Design of Machines and Equipment in Chemical Industry [in Russian], Izd. MIKhM. Moscow (1982). pp. 20–22.

    Google Scholar 

  7. I. V. Rokach, “Modal approach for processing one- and three-point bend test data for DSIF-time diagram determination. Pan 1. Theory, ”Fatigue Fract. Eng. Mat. Struct..21, 1007–1014(1998).

    Article  CAS  Google Scholar 

  8. I. V. Rokach. “Modal approach for processing one- and three-point bend test data for DSIF-time diagram determination. Part 2. Calculations and results.”Fatigue Fract. Eng. Mat. Struct.,21. 1015–1026 (1998).

    Article  CAS  Google Scholar 

  9. K. Kishimoto. S. Aoki. and M. Sakata. “Simple formula for dynamic stress intensity factors of precracked Charpy specimen.”Eng. Fract. Mech.,13, 501–508 (1980).

    Article  Google Scholar 

  10. K. Kishimoto. K. Kuroda. S. Aoki. and M. Sakata. “Simple formulae for dynamic fracture mechanics parameters of elastic and viscoelastic three-point bend specimens based on Timoshenko’s beam theory.” in:Proc. of the Sixth Internat. Conf. on Fracture, Vol. 5. Pergamon. Oxford (1984). pp. 3177–3184.

    Google Scholar 

  11. K. Kishimoto. K. Fujino. S. Aoki. and M. Sakata. “A simple formula for the dynamic stress intensity factor of a freely-supported bend specimen.”JSME Int. J. Ser: I. 33. 51–56 ( 1990).

    Google Scholar 

  12. V. G. Biderman.Theory of Mechanical Vibrations [in Russian], Vysshaya Shkola. Moscow (1980).

    Google Scholar 

  13. G. A. Korn and T. M. Kom.Mathematical Handbook for Scientists and Engineers. Definitions, Theorems, and Formulas for Reference and Review. McGraw-Hill. New York (1968).

    Google Scholar 

  14. S. Timoshenko. D. H. Young, and W. Weaver, Jr.,Vibration Problems in Engineering. Wiley, New York (1974).

    Google Scholar 

  15. R. G. Grimes. J. G. Lewis, and H. D. Simon. “A shield block Lanczos algorithm for solving sparse symmetric generalized eigenproblems, ”SIAM J. Matrix Anal. AppL 15. No. 1. 228–272(1994).

    Article  Google Scholar 

  16. V. V. Panasyuk. O. E. Andreikiv, and S. E. Kovchyk.Methods for the Evaluation of Crack Resistance of Structural Materials [in Russian], Naukova Dumka. Kiev (1977).

    Google Scholar 

  17. J. P. Benthem and W. T. Koiter, “Asymptotic approximations to crack problems,” in:Methods of Analysis and Solutions of Crack Problems, Nordhoff, Leyden (1973). pp. 131–178.

    Google Scholar 

  18. L. M. Keer. J. M. Freedman. and H. A. Watts, “Infinite tensile cylinder with circumferential edge crack.”Lett. Appl. Eng. Sei..5. 129–139(1977).

    Google Scholar 

  19. G. Wich,Ein Beitrag zur Ermittlung von RisszÄhigkeiten bei schlaganiger Belastung, PhD Thesis, München ( 1986).

  20. O. E. Andreikiv. S. E. Kovchyk. I. V. Khodan. and V. M. Boiko. “On the methods for the evaluation of the dynamic crack-growth resistance of structural materials.”Probl. Mashinostr. Avtomat. No. 5–6. 22–35 (1997).

  21. S. E. Kovchyk, I. V. Khodan. T. S. Zamora et al., “Information and measuring system for the dynamic investigation of structural materials.”Fiz.-Khim. Mekh. Mater.,30. No. 3, 133–136 (1994).

    Google Scholar 

  22. I. V. Khodan. S. E. Kovchyk. and V. M. Boiko. “Development and verification of new experimental procedures aimed at the prediction of the behavior of structural materials under dynamic loading.” in:Mechanics and Physics of Fracture of Building Materials and Structures [in Ukrainian], Kamenyar. L’viv (1998), pp. 561–567.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 36, No. 3, pp. 59–66, May-June, 2000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreikiv, O.E., Boiko, V.M., Kovchyk, S.E. et al. Dynamic tension of a cylindrical specimen with circumferential crack. Mater Sci 36, 382–391 (2000). https://doi.org/10.1007/BF02769599

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02769599

Keywords

Navigation