Skip to main content
Log in

Structure, function and expression of voltage-dependent sodium channels

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Voltage-dependent sodium channels control the transient inward current responsible for the action potential in most excitable cells. Members of this multigene family have been cloned, sequenced, and functionally expressed from various tissues and species, and common features of their structure have clearly emerged. Site-directed mutagenesis coupled with in vitro expression has provided additional insight into the relationship between structure and function. Subtle differences between sodium channel isoforms are also important, and aspects of the regulation of sodium channel gene expression and the modulation of channel function are becoming topics of increasing importance. Finally, sodium channel mutations have been directly linked to human disease, yielding insight into both disease pathophysiology and normal channel function. After a brief discussion of previous work, this review will focus on recent advances in each of these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed C. M. I., Ware D. H., Lee S. C., Patten C. D., Ferrermontiel A. V., Schinder A. F., McPherson J. D., Wagner-McPherson C. B., Wasmuth J. J., Evans G. A., and Montal M. (1992) Primary structure, chromosomal localization and functional expression of a voltage-gated sodium channel from human brain.Proc. Natl. Acad. Sci. USA 89, 8220–8224.

    PubMed  CAS  Google Scholar 

  • Aldrich R. W. (1986) Voltage-dependent gating of sodium channels: towards an integrated approach.Trends Neurosci. 9, 82–86.

    CAS  Google Scholar 

  • Ambrose C., Cheng S., Fontaine B., Nadeau J. H., MacDonald M., and Gusella J. F. (1992) The α-subunit of the skeletal muscle sodium channel is encoded proximal to Tk-1 on mouse chromosome 11.Mammal. Gen. 3, 151–155.

    CAS  Google Scholar 

  • Anderson C. S., MacKinnon R., Smith C., and Miller C. (1988) Charybdotoxin block of single Ca2+-activated K+ channels. Effects of channel gating, voltage, and ionic strength.J. Gen. Physiol. 91, 317–333.

    PubMed  CAS  Google Scholar 

  • Angelides K. J., Elmer L. W., Loftus D., and Elson E. (1988) Distribution and lateral mobility of voltage-dependent sodium channels in neurons.J. Cell. Biol. 106(6), 1911–1926.

    PubMed  CAS  Google Scholar 

  • Armstrong C. M. (1981) Sodium channels and gating currents.Physiol. Rev. 61, 644–683.

    PubMed  CAS  Google Scholar 

  • Armstrong C. M., Bezanilla F., and Rojas E. (1973) Destruction of sodium conductance inactivation in squid axons perfused with pronase.J. Gen. Physiol. 62, 375–391.

    PubMed  CAS  Google Scholar 

  • Armstrong C. M. and Bezanilla F. (1973) Currents related to movement of the gating particles of the sodium channels.Nature (Lond.) 242, 459–461.

    CAS  Google Scholar 

  • Armstrong C. M. and Bezanilla F. (1974) Charge movement associated with the opening and closing of the activation gates of the Na channels.J. Gen. Physiol. 63, 533–552.

    PubMed  CAS  Google Scholar 

  • Armstrong C. M. and Bezanilla F. (1977) Inactivation of the sodium channel. II. Gating current experiments.J. Gen. Physiol. 70, 567–590.

    PubMed  CAS  Google Scholar 

  • Atchison W. D., Luke V. S., Narahashi T., and Vogel S. M. (1986) Nerve membrane sodium channels as the target site of brevetoxins at neuromuscular junctions.Br. J. Pharmacol. 89(4), 731–738.

    PubMed  CAS  Google Scholar 

  • Auld V., Marshall J., Goldin A., Dowsett A., Catterall W., and Davidson, N. (1985) Cloning and characterization of the gene for the α-subunit of the mammalian voltage-gated sodium channel.J. Gen. Physiol. 86(2), 10a.

    Google Scholar 

  • Auld V. J., Goldin A. L., Krafte D. S., Catterall W. A., Lester H. A., Davidson N., and Dunn R. J. (1990) A neutral amino acid change in segment IIS4 dramatically alters the gating properties of the voltage-dependent sodium channel.Proc. Natl. Acad. Sci. USA 87(1), 323–327.

    PubMed  CAS  Google Scholar 

  • Auld V. J., Goldin A. L., Krafte D. S., Marshall J., Dunn J. M., Catterall W. A., Lester H. A., Davidson N., and Dunn R. J. (1988) A rat brain Na+ channel α-subunit with novel gating.Neuron 1, 449–461.

    PubMed  CAS  Google Scholar 

  • Backx P. H., Yue D. T., Lawrence J. H., Marban E., and Tomaselli G. F. (1992) Molecular localization of an ion-binding site within the pore of mammalian sodium channels.Science 257, 248–251.

    PubMed  CAS  Google Scholar 

  • Baker P. F. and Rubinson K. A. (1975) Chemical modification of crab nerves can make them insensitive to the local anesthetics tetrodotoxin and saxitoxin.Nature 257, 442–444.

    Google Scholar 

  • Baker P. F. and Rubinson K. A. (1976) TTX-resistant action potentials in crab nerve after treatment with Meerwein’s reagent.J. Physiol. 266, 3–4P.

    Google Scholar 

  • Balerna R., Ritchie J. M., and Strichartz G. R. (1975) Constitution and properties of axonal membranes of crustacean nerves.Biochemistry 14, 5500–5511.

    PubMed  CAS  Google Scholar 

  • Bambrick L. L. and Gordon T. (1988) Neural regulation of [3H]-saxitoxin binding site numbers in rat neonatal muscle.J. Physiol. 407, 263–274.

    PubMed  CAS  Google Scholar 

  • Bar-Sagi D. and Prives J. (1983) Tunicamycin inhibits the expression of surface sodium channels in cultured muscle cells.J. Cell. Physiol. 114, 77–81.

    PubMed  CAS  Google Scholar 

  • Bar-Sagi D. and Prives J. (1985) Negative modulation of sodium channels in cultured chick muscle cells by the channel activator batrachotoxin.J. Biol. Chem. 260(8), 4740–4744.

    PubMed  CAS  Google Scholar 

  • Barchi R. L. (1988) Probing the molecular structure of the voltage-dependent sodium channel.Ann. Rev. Neurosci. 11, 455–495.

    PubMed  CAS  Google Scholar 

  • Barchi R. L. and Weigele J. B. (1979) Characteristics of saxitoxin binding to the sodium channel of sarcolemma isolated from rat skeletal muscle.J. Physiol. 295, 383–396.

    PubMed  CAS  Google Scholar 

  • Baumann A., Krah J. I., Mueller R., Mueller H. F., Seidel R., Kecskemethy N., Casal J., Ferrus A., and Pongs O. (1987) Molecular organization of the maternal effect region of the Shaker complex ofDrosophila characterization of an Ia channel transcript with homology to vertebrate sodium channel.EMBO J. 6(11), 3419–3430.

    PubMed  CAS  Google Scholar 

  • Beckh S. (1990) Differential expression of sodium channel messenger RNAs in rat peripheral nervous system and innervated tissues.FEBS Lett. 262(2), 317–322.

    PubMed  CAS  Google Scholar 

  • Beckh S., Noda M., Luebbert H., and Numa, S. (1989) Differential regulation of three sodium channel messenger RNA species in the rat central nervous system during development.EMBO J. 8(12), 3611–3616.

    PubMed  CAS  Google Scholar 

  • Behrens M. I., Oberhauser A., Bezanilla F., and Latorre R. (1989) Batrachotoxin-modified sodium channels from squid optic nerve in planar bilayers ion conduction and gating properties.J. Gen. Physiol. 93(1), 23–42.

    PubMed  CAS  Google Scholar 

  • Beneski C. A. and Catterall W. A. (1980) Covalent labeling of protein components of the sodium channel with a photoactivatable derivative of scorpion toxin.Proc. Natl. Acad. Sci. USA 77, 639–643.

    PubMed  CAS  Google Scholar 

  • Bennett P. B., Makita N., and George A. L. (1993) A molecular basis for gating mode transitions in human skeletal muscle sodium channels.FEBS Lett. 326, 21–24.

    PubMed  CAS  Google Scholar 

  • Berwald-Netter Y., Martin-Moutot N., Koulakoff A., and Couraud F. (1981) Na+ channel associated scorpion toxin receptor sites as probes for neuronal evolutionin vivo andin vitro.Proc. Natl. Acad. Sci. USA 78, 1245–1249.

    PubMed  CAS  Google Scholar 

  • Bessereau J. L., Fontaine B., and Changeux J. P. (1990) Denervation of mouse skeletal muscle differentially affects the expression of thejun andfos protooncogenes.New Biol. 2(4), 375–383.

    PubMed  CAS  Google Scholar 

  • Bishopric N. H. and Kedes L. (1991) Adrenergic regulation of the skeletal α-actin gene promoter during myocardial cell hypertrophy.Proc. Natl. Acad. Sci. USA 88(6), 2132–2136.

    PubMed  CAS  Google Scholar 

  • Bond J. M., Herman B., and Lemasters J. J. (1991) Protection by acidotic pH against anoxia/reoxygenation injury to rat neonatal cardiac myocytes.Biochem. Biophys. Res. Commun. 179(2), 798–803.

    PubMed  CAS  Google Scholar 

  • Boudier J. A., Berwald-Netter Y., Dellmann H. D., Boudier J. L., Couraud F., Koulakoff A., and Cau P. (1985) Ultrastructural visualization of Na+-channel associated [125I] α-scorpion toxin binding sites on fetal mouse nerve cells in culture.Dev. Brain Res. 352, 137–142.

    CAS  Google Scholar 

  • Boudier, J. L., Letreut T., and Jover E. (1992) Autoradiographic localization of voltage-dependent sodium channels on the mouse neuromuscular junction using I-125-alpha scorpion toxin. 2. Sodium channel distribution on postsynaptic membranes.J. Neurosci. 12(2), 454–466.

    PubMed  CAS  Google Scholar 

  • Brodie C., Brody M., and Sampson S. R. (1989) Characterization of the relation between sodium channels and electrical activity in cultured rat skeletal myotubes: regulatory aspects.Brain Res. 488, 186–194.

    PubMed  CAS  Google Scholar 

  • Brodie C. and Sampson S. R. (1989) Characterization of thyroid hormone effects on sodium channel synthesis in cultured skeletal myotubes: role of Ca2+.Endocrinology 125(2), 842–849.

    PubMed  CAS  Google Scholar 

  • Brodie C. and Sampson S. R. (1990) Effects of ethanol on voltage-sensitive Na-channels in cultured skeletal muscle—up-regulation as a result of chronic treatment.J. Pharmacol. Exp. Ther. 255(3), 1195–1201.

    PubMed  CAS  Google Scholar 

  • Brodie C. and Sampson S. R. (1991) Verapamil regulation of Na-K pump levels in rat skeletal myotubes: role of spontaneous activity and Na channels.J. Neurosci. Res. 28, 229–235.

    PubMed  CAS  Google Scholar 

  • Brodwick M. S. and Eaton D. C. (1978) Sodium channel inactivation in squid axons is removed by high internal pH or tyrosine-specific reagents.Science 200, 1494–1496.

    PubMed  CAS  Google Scholar 

  • Brown G. B. (1988) Batrachotoxin a, window on the allosteric nature of the voltage-sensitive sodium channel.International Review Of Neurobiology (Smythies J. R. and Bradley R. J., eds.)29, 77–116.

    PubMed  CAS  Google Scholar 

  • Buja L. M. and Willerson J. T. (1991) Relationship of ischemic heart disease to sudden death.J. Forensic. Sci. 36(1), 25–33.

    PubMed  CAS  Google Scholar 

  • Burt J. M. and Spray D. C. (1989) Volatile anesthetics block intercellular communication between neonatal rat myocardial cells.Circ. Res. 65(3), 829–837.

    PubMed  CAS  Google Scholar 

  • Caffrey J. M., Brown A. M., and Schneider M. D. (1989) Ca2+ and Na+ currents in developing skeletal myoblasts are expressed in a sequential program: reversible suppression by transforming growth factor {ie420-1}, an inhibitor of the myogenic pathway.J. Neurosci. 9(10), 3443–3453.

    PubMed  CAS  Google Scholar 

  • Cannon S. C., Brown R. J., and Corey D. P. (1991) A sodium channel defect in hyperkalemic periodic paralysis: potassium-induced failure of inactivation.Neuron. 6(4), 619–626.

    PubMed  CAS  Google Scholar 

  • Cannon S. C. and Strittmatter S. M. (1993) Functional expression of sodium channel mutations identified in families with periodic paralysis.Neuron 10 (2), 317–326.

    PubMed  CAS  Google Scholar 

  • Catterall W. A. (1980) Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes.Ann. Rev. Pharmacol. Toxicol. 20, 15–43.

    CAS  Google Scholar 

  • Catterall W. A. (1986) Molecular properties of voltage-sensitive sodium channels.Ann. Rev. Biochem. 55, 953–985.

    PubMed  CAS  Google Scholar 

  • Catterall W. A. (1988) Structure and function of voltage-sensitive ion channels.Science 242, 50–61.

    PubMed  CAS  Google Scholar 

  • Catterall W. A. and Coppersmith J. (1981) Pharmacological properties of sodium channels in cultured rat heart cells.Mol. Pharmacol. 20(3), 533–542.

    PubMed  CAS  Google Scholar 

  • Chahine M., George A. L., Zhou M., Sun W., Barchi R., and Horn R. (1993) Sodium channel mutations in paramyotonia congenita destabilize inactivation.Neuron, in press.

  • Chatterjee T. K., Moy J. A., and Fisher R. A. (1991) Characterization and regulation of high affinity calcitonin gene-related peptide receptors in cultured neonatal rat cardiac myocytes.Endocrinology 128(6), 2731–2738.

    PubMed  CAS  Google Scholar 

  • Chen L.-Q., Chahine M., Kallen R. G., Barchi R. L., and Horn R. (1992) Chimeric study of sodium channels from rat skeletal and cardiac muscle.FEBS Lett. 309, 253–257.

    PubMed  CAS  Google Scholar 

  • Cohen S. A. and Barchi R. L. (1992a) Localization of epitopes for antibodies that differentially label sodium channels in skeletal muscle surface and t-tubular membranes.J. Memb. Biol. 128(3), 219–226.

    CAS  Google Scholar 

  • Cohen S. A. and Barchi R. L. (1992b) Cardiac sodium channel structure and function.Trends Cardiovasc. Med. 2(4), 133–140.

    CAS  Google Scholar 

  • Cohen S. A. and Barchi R. L. (1992c) Probing the structure of sodium channel cytoplasmic domains. Submitted for publication.

  • Cohen S. A. and Levitt L. K. (1993) Partial characterization of the rH1 sodium channel protein from rat heart using subtype-specific antibodies.Circ. Res. 73, 735–742.

    PubMed  CAS  Google Scholar 

  • Coombs J., Scheuer T., Rossie S., and Catterall W. (1988) Evidence that cyclic AMP-dependent phosphorylation promotes inactivation in embryonic rat brain cells in primary culture.Biophys. J. 53, 542a.

    Google Scholar 

  • Costa M. R. C., Casnellie J. E., and Catterall W. A. (1982) Selective phosphorylation of the α-subunit of the sodium channel by cyclic AMP-dependent protein kinase.J. Biol. Chem. 257(14), 7918–7921.

    PubMed  CAS  Google Scholar 

  • Costa M. R. C. and Catterall W. A. (1984a) Phosphorylation of the α-subunit of the sodium channel by protein kinase C.Cell Mol. Neurobiol. 4(3), 291–298.

    PubMed  CAS  Google Scholar 

  • Costa M. R. C. and Catterall W. A. (1984b) Cyclic AMP-dependent phosphorylation of the α-subunit of the sodium channel in synaptic nerve ending particles.J. Biol. Chem. 259(13), 8210–8218.

    PubMed  CAS  Google Scholar 

  • Couraud F., Martin-Moutot N., Koulakoff A., and Berwald-Netter, Y. (1986) Neurotoxin-sensitive sodium channels in neurons developing in vivo and in vitro.J. Neurosci. 6, 192–198.

    PubMed  CAS  Google Scholar 

  • Cribbs L. L., Satin J., Fozzard H. A., and Rogart R. B. (1990) Functional expression of the rat heart-I Na+ channel isoform-demonstration of properties characteristic of native cardiac Na+ channels.FEBS Lett. 275(1–2), 195–200.

    PubMed  CAS  Google Scholar 

  • Cruz L. J., Gray W. R., Olivera B. M., Zeikus R. D., Kerr L., Yoshikami D., and Moczydlowski E. (1985)Conus geographus toxins that discriminate between neuronal and muscle sodium channels.J. Biol. Chem. 260(16), 9280–9288.

    PubMed  CAS  Google Scholar 

  • Cummings T. R., Zhou J., Sigworth F. J., Ukomada C., Sephan M., Ptácek L. J., and Agnew W. S. (1993) Functional consequences of a Na+ channel mutation causing hyperkalemic periodic paralysis.Neuron 10, 667–678.

    Google Scholar 

  • Dargent B. and Couraud F. (1990) Down-regulation of voltage-dependent sodium channels initiated by sodium influx in developing neurons.Proc. Natl. Acad. Sci. USA 87, 5907–5911.

    PubMed  CAS  Google Scholar 

  • Dascal N. and Lotan I. (1991) Activation of protein kinase C alters voltage dependence of a Na+ channel.Neuron 6, 165–175.

    PubMed  CAS  Google Scholar 

  • Dascal N., Snutch T. P., Lubbert H., Davidson N., and Lester H. A. (1986) Expression and modulation of voltage-gated calcium channels after RNA injection inXenopus oocytes.Science 231, 1147–1150.

    PubMed  CAS  Google Scholar 

  • Dreyfus P., Rieger F., Murawsky M., Garcia L., Lombet A., Fosset M., Pauron D., Barhanin J., and Lazdunski M. (1986) The voltage-dependent sodium channel is co-localized with the acetylcholine receptor at the vertebrate neuromuscular junction.Biochem. Biophys. Res. Commun. 139(1), 196–201.

    PubMed  CAS  Google Scholar 

  • Dunnmon P. M., Iwaki K., Henderson S. A., Sen A., and Chien K. R. (1990) Phorbol esters induce immediate-early genes and activate cardiac gene transcription in neonatal rat myocardial cells.J. Mol. Cell. Cardiol. 22(8), 901–910.

    PubMed  CAS  Google Scholar 

  • Eaton D. C., Brodwick M. S., Oxford G. S., and Rudy B. (1978) Arginine-specific reagents remove sodium channel inactivation.Nature (Lond.) 271, 473–476.

    CAS  Google Scholar 

  • Ebers G. C., George A. L., Barchi R. L., Ting-Passador S. S., Kallen R. G., Lathrop G. M., Beckmann J. S., Hahn A. F., Brown W. F., Campbell R. D., and Hudson A. J. (1991) Paramyotonia congenita and hyperkalemic periodic paralysis are linked to the adult muscle sodium channel gene.Ann. Neurol. 30(6), 810–816.

    PubMed  CAS  Google Scholar 

  • Elmer L. W., Obrien B. J., Nutter T. J., and Angelides K. J. (1985) Physicochemical characterization of the α-peptide of the sodium channel from rat brain.Biochemistry 24(27), 8128–8137.

    PubMed  CAS  Google Scholar 

  • Emerick M. C. and Agnew W. S. (1989) Identification of phosphorylation sites for cyclic AMP-dependent protein kinase on the voltage-sensitive sodium channel fromElectrophorus-electricus.Biochemistry 28(21), 8367–8380.

    PubMed  CAS  Google Scholar 

  • Estacion, M. (1990) Inhibition of voltage-dependent Na+ current in cell-fusion hybrids containing activatedc-Ha-ras.J. Membrane Biol. 113, 169–175.

    CAS  Google Scholar 

  • Flamm R. E., Birnberg N. C., and Kaczmarek L. K. (1990) Transfection of activatedras into an excitable cell line (AtT-20) alters tetrodotoxin sensitivity of voltage-dependent sodium current.Pflugers Arch. 416, 120–125.

    PubMed  CAS  Google Scholar 

  • Fontaine B., Khurana T. S., Hoffman E. P., Bruns G. A., Haines J. L., Trofatter J. A., Hanson M. P., Rich J., McFarlane H., Yasek D. M., Romano D., Gusella J., and Brown R. (1990) Hyperkalemic periodic paralysis and the adult muscle sodium channel α-subunit gene.Science 250, 1000–1002.

    PubMed  CAS  Google Scholar 

  • Fontecilla-Camps J. C., Habersetzer R. C., and Rochat H. (1988) Orthorhombic crystals and 3-dimensional structure of the potent toxin II from the scorpionAndroctonus Australis Hector.Proc. Natl. Acad. Sci. USA 85, 7443–7447.

    PubMed  CAS  Google Scholar 

  • Foster K. A., McDermott P. J., and Robishaw J. D. (1990) Expression of G proteins in rat cardiac myocotes: effect of KC1 depolarization.Am. J. Physiol. 259(2 Pt 2), h431–441.

    Google Scholar 

  • Garber S. S. and Miller C. (1987) Single Na+ channels activated by veratridine and batrachotoxin.J. Gen. Physiol. 89(3), 459–480.

    PubMed  CAS  Google Scholar 

  • Gautron S., Dossantos G., Pintohenrique D., Koulakoff A., Gros F., and Berwaldnetter Y. (1992) The glial voltage-gated sodium channel: cell-specific and tissue-specific messenger RNA expression.Proc. Natl. Acad. Sci. USA 89(15), 7272–7276.

    PubMed  CAS  Google Scholar 

  • Gellens M. E., George A. L., Jr., Chen L., Chahine M., Horn R., Barchi R. L., and Kallen R. G. (1992) Primary structure and functional expression of the human cardiac voltage-sensitive sodium channel.Proc. Natl. Acad. Sci. USA 89, 554–558.

    PubMed  CAS  Google Scholar 

  • George A. F., Jr., Iyer G. S., Kleinfield R., Kallen R. G., and Barchi R. L. (1993) Genomic organization of the human skeletal muscle sodium channel gene.Genomics 15, 598–606.

    PubMed  CAS  Google Scholar 

  • George A. L., Jr, Knittle T. J., and Tamkun M. M. (1992a) Molecular cloning of an atypical voltage-gated sodium channel expressed in human heart and uterus: evidence for a distinct gene family.Proc. Natl. Acad. Sci. USA 89(11), 4893–4897.

    PubMed  CAS  Google Scholar 

  • George A. L., Jr., Komisarof J., Kallen R. G., and Barchi R. L. (1992b) Primary structure of the adult human skeletal muscle voltage-dependent sodium channel.Ann. Neurol. 31, 131–137.

    PubMed  CAS  Google Scholar 

  • George A. L., Jr., Ledbetter D. H., Kallen R. G., and Barchi R. L. (1991) Assignment of a human skeletal muscle sodium channel α-subunit gene (SCN4A) to 17q23. 1-25.3.Genomics 9, 555–556.

    PubMed  CAS  Google Scholar 

  • Gilly W. F., Lucero M. T., and Horrigan F. T. (1990) Control of the spatial distribution of sodium channels in giant fiber lobe neurons of the squid.Neuron 5(5), 663–674.

    PubMed  CAS  Google Scholar 

  • Ginty D. D., Fanger G. R., Wagner J. A., and Maue R. A. (1992) The activity of cAMP-dependent protein kinase is required at a posttranslational level for induction of voltage-dependent sodium channels by peptide growth factors in PC12 cells.J. Cell Biol. 116, 1465–1473.

    PubMed  CAS  Google Scholar 

  • Gonoi T., Ashida K., Feller D., Schmidt J., Fujiwara M., and Catterall W. A. (1986) Mechanism of action of a polypeptide neurotoxin from the coralGoniopora on sodium channels in mouse neuroblastoma cells.Mol. Pharmacol. 29(4), 347–354.

    PubMed  CAS  Google Scholar 

  • Gordon R. D., Fieles W. E., Schotland D. L., Hogue A. R., and Barchi R. L. (1987) Topographical localization of the C-terminal region of the voltage-dependent sodium channel fromElectrophorus electricus using antibodies raised against a synthetic peptide.Proc. Natl. Acad. Sci. USA 84(1), 308–312.

    PubMed  CAS  Google Scholar 

  • Gordon R. D., Li Y., Fieles W. E., Schotland D. L., and Barchi R. L. (1988) Topological localization of a segment of the eel voltage-dependent sodium channel primary sequence aa 927–938 that discriminates between models of tertiary structure.J. Neurosci. 8(10), 3742–3749.

    PubMed  CAS  Google Scholar 

  • Gordon D., Merrick D., Wollner D. A., and Catterall W. A. (1988) Biochemical properties of sodium channels in a wide range of excitable tissues studied with site directed antibodies.Biochemistry 27, 7032–7038.

    PubMed  CAS  Google Scholar 

  • Greenblatt R. E., Blatt Y., and Montal M. (1985) The structure of the voltage-sensitive sodium channel.FEBS Lett. 193, 125–134.

    PubMed  CAS  Google Scholar 

  • Gunderson C. B., Miledi R., and Parker I. (1984a) Messenger RNA from human brain induces drug- and voltage-operated channels inXenopus oocytes.Nature 308, 421–424.

    Google Scholar 

  • Gunderson C. B., Miledi R., and Parker I. (1984b) Properties of human brain glycine receptors expressed inXenopus oocytes.Proc. R. Soc. London (Series B)221, 235–244.

    Google Scholar 

  • Guy H. R. and Conti F. (1990) Pursuing the structure and function of voltage-gated sodium channel.Trends Neurosci. 13, 201–206.

    PubMed  CAS  Google Scholar 

  • Guy H. R. and Seetharamulu P. (1986) Molecular model of the action potential sodium channel.Proc. Natl. Acad. Sci. USA 83(2), 508–512.

    PubMed  CAS  Google Scholar 

  • Han J., Lu C. M., Brown G. B., and Rado T. A. (1991) Direct amplification of a single dissected chromosome polymerase chain reaction: A human brain sodium channel on chromosome 2q22-q23.Proc. Natl. Acad. Sci. USA 88, 335–339.

    PubMed  CAS  Google Scholar 

  • Harris J. B. and Thesleff S. (1971) Studies on tetrodotoxin resistant action potentials in denerated skeletal muscle.Acta. Physiol. Scand. 83, 382–388.

    PubMed  CAS  Google Scholar 

  • Hartmann H. A., Kirsch G. E., Drewe J. A., Taglialatela M., Joho R. H., and Brown A. M. (1991) Exchange of conduction pathways between two related K+ channels.Science 251, 942–944.

    PubMed  CAS  Google Scholar 

  • Heginbotham L. and MacKinnon R. (1992) The aromatic binding site for tetraethylammonium ion on potassium channels.Neuron 8, 483–491.

    PubMed  CAS  Google Scholar 

  • Heinemann S. H., Terlau H., Stühmer W., Imoto K., and Numa S. (1992) Calcium channel characteristics conferred on the sodium channel by single mutations.NAT 356, 441–443.

    CAS  Google Scholar 

  • Henderson R., Ritchie J. M., and Strichartz G. R. (1973) The binding of labeled saxitoxin to the sodium channels in nerve membranes.J. Physiol. 235, 783–804.

    PubMed  CAS  Google Scholar 

  • Henderson R., Ritchie J. M., and Strichartz G. R. (1974) Evidence that tetrodotoxin and saxitoxin act at a metal cation binding site in the sodium channels of nerve membrane.Proc. Natl. Acad. Sci. USA 71, 3936–3940.

    PubMed  CAS  Google Scholar 

  • Henrich C. J. and Simpson P. C. (1988) Differential acute and chronic response of protein kinase C in cultured neonatal rat heart myocytes to alpha 1-adrenergic and phorbol ester stimulation.J. Mol. Cell. Cardiol. 20(12), 1081–1085.

    PubMed  CAS  Google Scholar 

  • Hille B. (1968) Charges and potentials at the nerve surface: divalent ions and pH.J. Gen. Physiol. 51, 221–236.

    PubMed  CAS  Google Scholar 

  • Hille B. (1971) The permeability of the sodium channel to organic cations in myelinated nerve.J. Gen. Physiol. 58, 599–619.

    PubMed  CAS  Google Scholar 

  • Hille B. (1972) The permeability of the sodium channel to metal cations in myelinated nerve.J. Gen. Physiol. 59, 637–658.

    PubMed  CAS  Google Scholar 

  • Hille B. (1977) Local anesthetics: hydrophilic and hydrophobic pathways for drug-receptor reaction.J. Gen. Physiol. 69, 497–515.

    PubMed  CAS  Google Scholar 

  • Hille B. (1984)Ionic Channels of Excitable Membanes. Sinauer Assoc., Inc., Sunderland, MA.

    Google Scholar 

  • Hirono C., Yanagishi S., O'Hara R., Hisanaga Y., Nakayama T., and Sugiyama H. (1985) Characterization of mRNA responsible for induction of functional sodium channels inXenopus oocytes.Brain Res. 359, 57–61.

    PubMed  CAS  Google Scholar 

  • Hodgkin A. L. and Huxley A. F. (1952) The components of membrane conductance in the giant axon ofLoligo.J. Physiol. (Lond.) 116, 473–496.

    CAS  Google Scholar 

  • Hondeghem L. M. and Katzung B. G. (1987) Antiarrhythmic agents: the modulated receptor mechanism of action of sodium channel-blocking drugs.Annu. Rev. Pharmacol. Toxicol. 24, 387–423.

    Google Scholar 

  • Horn R. (1984) Gating of channels in nerve and muscle: a stochastic approach, inIon Channels: Molecular and Physiological Aspects. Academic, New York, pp. 53–97.

    Google Scholar 

  • Hoshi T., Zagotta W. N., and Aldrich R. W. (1990) Biophysical and molecular mechanisms of Shaker potassium channel inactivation.Science 250, 533–538.

    PubMed  CAS  Google Scholar 

  • Isom L. L., Dejongh K. S., Patton D. E., Reber B. F. X., Offord J., Charbonneau H., Walsh K., Goldin A. L., and Catterall W. A. (1992) Primary structure and functional expression of the {ie423-1} of the rat brain sodium channel.Science 256, 839–842.

    PubMed  CAS  Google Scholar 

  • Ito H., Miller S. C., Billingham M. E., Akimoto H., Torti S. V., Wade R., Gahlmann R., Lyons G., Kedes L., and Torti F. M. (1990) Doxorubicin selectively inhibits muscle gene expression in cardiac muscle cellsin vivo andin vitro.Proc. Natl. Acad. Sci. (USA) 87(11), 4275–4279.

    CAS  Google Scholar 

  • Joho R. H., Moorman J. R., Van Dongen A. M., Kirsch G. E., Silberberg H., Schuster G., and Brown A. M. (1990) Toxin and kinetic profile of rat brain type III sodium channels expressed inXenopus oocytes.Brain Res. Mol. Brain Res. 7(2), 105–113.

    PubMed  CAS  Google Scholar 

  • Joho R. H., Moorman J. R., Van Dongen A. M. J., Kirsch G. E., Silberberg H., Schuster G., and Brown A. M. (1988) Cloning and expression of the rat brain type III sodium channel gene.Cetus Upjohn UCLA Symposium on Molecular Biology Of The Cardiovascular System. Keystone, CO.

  • Jover E., Massacrier A., Cau P., Martin M. F., and Couraud F. (1988) The correlation between Na+ channel subunits and scorpion toxin-binding sites.J. Biol. Chem. 263, 1542–1548.

    PubMed  CAS  Google Scholar 

  • Kallen R. G., Sheng Z. H., Yang, J., Chen L. Q., Rogart R. B., and Barchi R. L. (1990) Primary structure and expression of a sodium channel characteristic of denervated and immature rat skeletal muscle.Neuron 4(2), 233–242.

    PubMed  CAS  Google Scholar 

  • Kalman D., Wong B., Horvai A., Cline M., and O'Lague P. (1990) Nerve growth factor acts through cAMP-dependent protein kinase to increase the number of sodium channels in PC12 cells.Neuron 2, 355–366.

    Google Scholar 

  • Kamb A., Iverson L. E., and Tanouye M. A. (1987) Molecular characterization of Shaker, aDrosophila gene that encodes a potassium channel.Cell 50(3) 405–413.

    PubMed  CAS  Google Scholar 

  • Kamb A., Tseng-Crank J. and Tanouye M. A. (1988) Multiple products of theDrosophila Shaker gene may contribute to potassium channel diversity.Neuron 1, 421.

    PubMed  CAS  Google Scholar 

  • Kayano T., Noda M., Flockerzi V., Takahashi H., and Numa S. (1988) Primary structure of rat brain sodium channel III deduced from the cDNA sequence.FEBS Lett. 228(1), 187–194.

    PubMed  CAS  Google Scholar 

  • Kirsch G. E., Skattebol A., Possani L. D., and Brown A. M. (1989) Modification of Na channel gating by α-scorpion toxin fromTityus serrulatus.J. Gen. Physiol. 93(1), 67–83.

    PubMed  CAS  Google Scholar 

  • Klocke R., Kaupmann K., George A. L., Barchi R. L., and Jockusch H. (1992) Chromosomal mapping of muscle-expressed sodium channel genes in the mouse.Mouse Genome 90, 433–435.

    Google Scholar 

  • Koch M. C., Ricker K., Otto M., Grimm T., Hoffman E., Rudel R., Bende K., Zoll B., Harper P., and Lehmann-Horn, F. (1991) Confirmation of linkage of hyperkalmeic periodic paralysis to chromosome 17.J. Med. Genet. 28, 583–586.

    PubMed  CAS  Google Scholar 

  • Komuro I., Kaida T., Shibazaki Y., Kurabayashi M., Katoh Y., Hoh E., Takaku F., and Yazaki, Y. (1990) Stretching cardiac myocytes stimulates protooncogene expression.J. Biol. Chem. 265(7), 3595–3598.

    PubMed  CAS  Google Scholar 

  • Kontis K. J. and Goldin A. L. (1993) Site-directed mutagenesis of the putative pore region of the rat IIA sodium channel.Mol. Pharmacol. 43, 635–644.

    PubMed  CAS  Google Scholar 

  • Kosower E. M. (1985) A structural and dynamic molecular model for the sodium channel ofElectrophorus electricus.FEBS Lett. 182, 234–242.

    PubMed  CAS  Google Scholar 

  • Krafte D. S., Goldin A. L., Auld V. J., Dunn R. J., Davidson N., and Lester H. A. (1990) Inactivation of cloned Na channels expressed inXenopus oocytes.J. Gen. Physiol. 96(4), 689–706.

    PubMed  CAS  Google Scholar 

  • Krafte D. S., Volberg W. A., Dillon K., and Ezrin A. M. (1991) Expression of cardiac Na channels with appropriate physiological and pharmacological properties inXenopus oocytes.Proc. Natl. Acad. Sci. USA 88(10), 4071–4074.

    PubMed  CAS  Google Scholar 

  • Kraner S. D., Chong J. A., Tsay H.-J., and Mandel G. (1992) Silencing the type II sodium channel gene: a model for neural-specific gene regulation.Neuron 9, 37–44.

    PubMed  CAS  Google Scholar 

  • Kraner S., Yang J., and Barchi R. (1989) Structural inferences for the native skeletal muscle sodium channel as derived from patterns of endogenous proteolysis.J. Biol. Chem. 264(22), 13,273–13,280.

    CAS  Google Scholar 

  • Lehmann-Horn F., Kuther G., Ricker K., Grafe P., Ballanyi K., and Rüdel R. (1987a) Adynamia episodica hereditaria with myotonia: a nonactivating sodium current and the effect of extracellular pH.Muscle Nerve 10, 363–374.

    PubMed  CAS  Google Scholar 

  • Lehmann-Horn F., Rüdel R., and Ricker K. (1987b) Membrane defects in paramyotonia congenita (Eulenburg).Muscle Nerve 10, 633–641.

    PubMed  CAS  Google Scholar 

  • Levine M. and Manley J. L. (1989) Transcriptional repression of eukaryotic promoters.Cell 59(3), 405–408.

    PubMed  CAS  Google Scholar 

  • Li M., West J. W., Lai Y., Scheuer T., and Catterall W. A. (1992) Functional modulation of brain sodium channels by cAMP-dependent phosphorylation.Neuron 8, 1151–1159.

    PubMed  CAS  Google Scholar 

  • Liman E. R., Hess P., Weaver F., and Koren G. (1991) Voltage-sensing residues in the S4 region of a mammalian K+ channel.Nature 353, 752–756.

    PubMed  CAS  Google Scholar 

  • Litt M., Luty J., Kwak M., Allen L., Magenis R. E., and Mandel G. (1989) Localization of a human brain sodium channel gene SCN2A to chromosome 2.Genomics 5(2), 204–208.

    PubMed  CAS  Google Scholar 

  • Lloyd T. R. and Marvin W. J., Jr. (1990) Sympathetic innervation improves the contractile performance of neonatal cardiac ventricular myocytes in culture.J. Mol. Cell Cardiol. 22(3), 333–342.

    PubMed  CAS  Google Scholar 

  • Logothetis D. E., Movahedi S., Satler C., Lindpaintner K., and Nada, G. B. (1992) Incremental reductions of positive charge within the S4 region of a voltagegated K+ channel result in corresponding decreases in gating charge.Neuron 8, 531–540.

    PubMed  CAS  Google Scholar 

  • Lopez G. A., Jan Y. N., and Jan L. Y. (1991) Hydrophobic substitution mutations in the S4-sequence alter voltage-dependent gating in Shaker K+-channels.Neuron 7(2), 327–336.

    PubMed  CAS  Google Scholar 

  • MacKinnon R. and Miller C. (1989) Mutant potassium channels with altered binding of charybdotoxin, a pore0blocking peptide inhibitor.Science 245, 1382–1385.

    PubMed  CAS  Google Scholar 

  • MacKinnon R. and Yellen G. (1990) Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels.Science 250, 276–279.

    PubMed  CAS  Google Scholar 

  • Makita N., Bennett P. A., and George A. L. (1993) Voltage-gated Na+ channel beta1 subunit mRNA expressed in adult human skeletal muscle, heart and brain is encoded by a single gene.J. Biol. Chem., in press.

  • Malo D., Schurr E., Dorfman J., Canfield V., Levenson R., and Gros P. (1991) Three brain sodium channel α-subunit genes are clustered on the proximal segment of mouse chromosome-2.Genomics 10(3), 666–672.

    PubMed  CAS  Google Scholar 

  • Mandel G., Cooperman S. S., Maue R. A., Goodman R. H., and Brehm P. (1988) Selective induction of brain type II Na+ channels by nerve growth factor.Proc. Natl. Acad. Sci. USA 85(3), 924–928.

    PubMed  CAS  Google Scholar 

  • Matsuda J. J., Lee H., and Shibata E. F. (1992) Enhancement of rabbit cardiac sodium channels by β-adrenergic stimulation.Circulation Res. 70(1), 199–207.

    PubMed  CAS  Google Scholar 

  • Maue R. A., Kraner S. D., Goodman R. H., and Mandel G. (1990) Neuron specific expression of the rat brain type II sodium channel gene is directed by upstream regulatory elements.Neuron 4(2), 223–231.

    PubMed  CAS  Google Scholar 

  • McClatchey A. I., McKenna-Yasek D., Cros D., Worthen H. G., Kuncl R. W., De Silva S. M., Cornblath D. R., Gusella J. F., and Brown R. H. (1992) Novel mutations in families with unusual and variable disorders of the skeletal muscle sodium channel.Nature Genetics 2, 148–152.

    PubMed  CAS  Google Scholar 

  • McClatchey A. I., Cannon S. C., Slaugenhaupt S. A., and Gusella J. F. (1993) The cloning and expression of a sodium channel beta-1-subunit cDNA from human brain.Hum. Mol. Genet. 2, 745–749.

    PubMed  CAS  Google Scholar 

  • Messner D. J. and Catterall W. A. (1985) The sodium channel from rat brain. Separation and characterization of subunits.J. Biol. Chem. 260, 10,597–10,604.

    CAS  Google Scholar 

  • Meves H. and Nagy K. (1989) Multiple conductance states of the sodium channel and of other ion channels.Biochim. Biophs. Acta. 988(1), 99–106.

    CAS  Google Scholar 

  • Meves H., Simard J. M., and Watt D. D. (1985) Interactions of scorpion toxins with the sodium channel, inAnnals of The New York Academy of Sciences (Kao C. Y. and Levinson S. R., eds.),5, 897–966.

  • Moorman J. R., Kirsch G. E., Lacerda A. E., and Brown A. M. (1989) Angiotensin II modulates cardiac Na+ channels in neonatal rat.Circ. Res. 65(6), 1804–1809.

    PubMed  CAS  Google Scholar 

  • Moorman J. R., Kirsch G. E., Brown A. M., and Joho R. H. (1990) Changes in sodium channel gating produced by point mutations in a cytoplasmic linker.Science 250, 688–690.

    PubMed  CAS  Google Scholar 

  • Mori N., Schoenherr C., Vandenbergh D. J., and Anderson D. J. (1992) A common silencer element in the SCG10 and type II sodium channel genes binds a factor present in nonneuronal cells but not in neuronal cells.Neuron 9, 45–54.

    PubMed  CAS  Google Scholar 

  • Nilius B. (1988) Modal gating behavior of cardiac sodium channels in cell-free membrane patches.Biophys. J. 53(6), 857–862.

    PubMed  CAS  Google Scholar 

  • Noda M., Ikeda T., Kayano T., Suzuki H., Takeshima H., Kurasaki M., Takahashi H., and Numa S. (1986a) Existence of distinct sodium channel messenger RNAs in rat brain.Nature 320(6058), 188–192.

    PubMed  CAS  Google Scholar 

  • Noda M., Ikeda T., Suzuki H., Takeshima H., Takahashi T., Kuno M., and Numa S. (1986b) Expression of functional sodium channels from cloned cDNA.Nature 322(6082), 826–828.

    PubMed  CAS  Google Scholar 

  • Noda M., Shimizu S., Tanabe T., Takai T., Kayano T., Ikeda T., Takahashi H., Nakayama H., Kanaoka Y., Minamino N., Kangawa K., Matsuo H., Raftery M. A., Hirose T., Inayama S., Hayashida H., Miyata T., and Numa S. (1984) Primary structure ofElectrophorus-electricus sodium channel deduced from complementary DNA sequence.Nature 312(5990), 121–127.

    PubMed  CAS  Google Scholar 

  • Noda M., Suzuki H., Numa S., and Stühmer W. (1989) A single point mutation confers tetrodotoxin and saxitoxin insensitivity on the sodium channel II.FEBS Lett. 259(1), 213–216.

    PubMed  CAS  Google Scholar 

  • Numann R., Catterall W. A., and Scheuer T. (1991) Functional modulation of brain sodium channels by protein kinase C phosphorylation.Science 254, 115–118.

    PubMed  CAS  Google Scholar 

  • Offord J. and Catterall W. A. (1989) Electrical activity, cAMP, and cytosolic calcium regulate mRNA encoding sodium channel α-subunits in rat muscle cells.Neuron 2, 1447–1452.

    PubMed  CAS  Google Scholar 

  • Orlowski J. and Lingrel J. B. (1990) Thyroid and glucocorticoid hormones regulate the expression of multiple Na, K-ATPase genes in cultured neonatal rat cardiac myocytes.J. Biol. Chem. 265(6), 3462–3470.

    PubMed  CAS  Google Scholar 

  • Oxford G. S., Wu C. H., and Narahashi T. (1978) Removal of sodium channel inactivation in squid giant axons by N-bromoacetamide.J. Gen Physiol. 71, 227–247.

    PubMed  CAS  Google Scholar 

  • Papazian D. M., Schwarz T. L., Tempel B. L., Jan Y. N., and Jan L. Y. (1987) Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene fromDrosophila.Science 237(4816), 749–753.

    PubMed  CAS  Google Scholar 

  • Papazian D. M., Timpe L. C., Jan Y. N., and Jan L. Y. (1991) Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence.Nature 349, 305–310.

    PubMed  CAS  Google Scholar 

  • Pappone P. A. (1980) Voltage-clamp experiments in normal and denervated mammalian skeletal muscle fibres.J. Physiol. 306, 377–410.

    PubMed  CAS  Google Scholar 

  • Parker T. G., Chow K. L., Schwartz R. J., and Schneider M. D. (1990) Differential regulation of skeletal alpha-actin transcription in cardiac muscle by two fibroblast growth factors.Proc. Natl. Acad. Sci. USA 87(18), 7066–7070.

    PubMed  CAS  Google Scholar 

  • Patlak J. B. and Ortiz M. (1986) Two modes of gating during late Na+ channel currents in frog sartorius muscle.J. Gen. Physiol. 87, 305–326.

    PubMed  CAS  Google Scholar 

  • Patlak J. B. and Ortiz M. (1989) Kinetic diversity of sodium channel bursts in frog skeletal muscle.J. Gen. Physiol. 94(2), 279–302.

    PubMed  CAS  Google Scholar 

  • Patton D. E., West J. W., Catterall W. A., and Goldin A. L. (1992a) Amino acids residues required for fast sodium channel inactivation. Charge neutralizations and deletions in the III–IV linker.Proc. Natl Acad. Sci. USA 89, 10,905–10,909.

    CAS  Google Scholar 

  • Patton D. E., West J. W., Catterall W. A., and Goldin A. L. (1992b) The sodium channel III–IV linker functions as an amino terminal inactivation particle in the MK1 potassium channel.Soc. Neurosci. Abs. 18, 922.

    Google Scholar 

  • Poli M. A., Mende T. J., and Baden D. G. (1986) Brevetoxins, unique activators of voltage-sensitive sodium channels, bind to specific sites in rat brain synaptosomes.Mol. Pharmacol. 30(2), 129–135.

    PubMed  CAS  Google Scholar 

  • Pollock J. D., Krempin M., and Rudy B. (1990) Differential effects of NGF, EGF, cAMP, and dexamethasone on neurite outgrowth and sodium channel expression in PC12 cells.J. Neurosci. 10(8), 2626–2637.

    PubMed  CAS  Google Scholar 

  • Pongs O., Kecskemethy N., Muller R., Krah-Hentgens I., Baumann A., Kiltz H. H., Canal I., Llamazares S., and Ferrus A. (1988) Shaker encodes a family of putative potassium channel proteins in the nervous system ofDrosophila.EMBO J. 7, 1087–1096.

    PubMed  CAS  Google Scholar 

  • Ptácek L. J., George A. L., Jr, Barchi R. L., Griggs R. C., Riggs J. E., Robertson M., and Leppert M. F. (1992a) Mutations in an S4 segment of the adult skeletal muscle sodium channel cause paramyotonia congenita.Neuron 8(5), 891–897.

    PubMed  Google Scholar 

  • Ptácek L. J., Tawil R., Griggs R. C., Storvick D., and Leppert M. (1992b) Linkage of atypical myotoniacongenita to a sodium channel locus.Neurology 42(2), 431–433.

    PubMed  Google Scholar 

  • Ptácek L. J., George A. L., Griggs R. C., Tawil R., Kallen R. G., Barchi R. L., Robertson M., and Leppert M. (1991a) Identification of a mutation in the gene causing hyperkalemic periodic paralysis.Cell 67, 1021–1027.

    PubMed  Google Scholar 

  • Ptácek L. F., Tyler F., Trimmer J. S., Agnew W. S., and Leppert M. (1991b) Analysis in a large hyperkalemic periodic paralysis pedigree supports tight linkage to a sodium channel locus.Am. J. Hum. Genet. 49, 378–382.

    PubMed  Google Scholar 

  • Ptácek L. J., Gouw L, Kwiecinski H., McManis P., Mendell J. R., Barohn R. J., George A. L., Barch, R. L., Robertson M., and Leppert M. F. (1993) Sodium channel mutations in paramyotonia congenita and periodic paralysis. Submitted for publication.

  • Reber B. F. X. and Catterall W. A. (1987) Hydrophobic properties of the {ie425-1} and {ie425-2} of the rat brain sodium channel.J. Biol. Chem. 262, 11,369–11,374.

    CAS  Google Scholar 

  • Recio-Pinto E., Thornhill W. B., Duch D. S., Levinson S. r., and Urban B. W. (1990) Neuraminidase treatment modifies the function of electroplax sodium channels in planar lipid bilayers.Neuron 5(5), 675–684.

    PubMed  CAS  Google Scholar 

  • Redfern P. and Thesleff S. (1971) Action potential generation in denervated rat skeletal muscle. II Action of tetrodotoxin.Acta. Physiol. Scand. 82, 70–78.

    PubMed  CAS  Google Scholar 

  • Reed J. K. and Raftery M. A. (1976) Properties of the t tetrodotoxin binding component in plasma membranes isolated fromElectrophorus electricus.Biochemistry 15, 944–953.

    PubMed  CAS  Google Scholar 

  • Renaud J.-F., Kazazoglou T., Lombat A., Chicheportiche R., Jaimovich E., Romey G., and Lazdunski M. (1983) The Na+ channel in mammalian cardiac cells—two kinds of tetrodoxin receptors in rat heart membranes.J. Biol. Chem. 258(14), 8799–8805.

    PubMed  CAS  Google Scholar 

  • Ricker K., Camacho L., Grafe P., Lehmann-Horn F., and Rudel R. (1989) Adynamia episodica hereditaria: what causes the weakness?Muscle Nerve 12, 883–891.

    PubMed  CAS  Google Scholar 

  • Roberts R. H. and Barchi R. L. (1987) The voltage-sensitive sodium channel from rabbit skeletal muscle: chemical characterization of subunits.J. Biol. Chem. 262(5), 2298–2303.

    PubMed  CAS  Google Scholar 

  • Rogart R. B., Regan L. J., Dziekan L. C., and Galper, J. B. (1983) Identification of two sodium channel subtypes in chick heart and brain.Proc. Natl. Acad. Sci. USA 80, 1106–1110.

    PubMed  CAS  Google Scholar 

  • Rogart R. B., Cribbs L. L., Muglia L. K., Kephart D. D., and Kaiser M. W. (1989) Molecular cloning of a putative tetrodotoxin-resistant rat heart Na+ channel isoform.Proc. Natl. Acad. Sci. USA 86(20), 8170–8174.

    PubMed  CAS  Google Scholar 

  • Rogart R. B. and Regan L. F. (1985) Two subtypes of sodium channel with tetrodotoxin sensitivity and insensitivity detected in denervated mammalian skeletal muscle.Brain Res. 329, 314–318.

    PubMed  CAS  Google Scholar 

  • Rojas E. and Armstrong C. M. (1971) Sodium conductance activation without inactivation in pronase-perfused axons.Nature (Lond.) 229, 177–178.

    CAS  Google Scholar 

  • Rojas E. and Rudy B. (1976) Destruction of the sodium conductance inactivation by a specific protease in perfused nerve fibres fromLoligo.J. Physiol. 262, 501–531.

    PubMed  CAS  Google Scholar 

  • Rojas C., Wang J., Schwartz L., Hoffman E., Powell B., and Brown R. (1991) A Met to Val mutation in the skeletal muscle Na+ channel α-subunit in hyperkalemic periodic paralysis.Nature 254, 387–389.

    Google Scholar 

  • Rossie S. and Catterall W. A. (1989) Phosphorylation of the α-subunit of rat brain sodium channels by cAMP-dependent protein kinase at a new site containing Ser686 and Ser687.J. Biol. Chem. 264(24), 14,220–14,224.

    CAS  Google Scholar 

  • Rossie S., Gordon D., and Catterall W. A. (1987) Identification of an intracellular domain of the sodium channel having multiple cyclic AMP-dependent phosphorylation sites.J. Biol. Chem. 262(36), 17,530–17,535.

    CAS  Google Scholar 

  • Rudel R., Lehmann-Horn F., Ricker K., and Kuther G. (1984) Hypokalemic periodic paralysis:in vitro investigation of muscle fiber membrane parameters.Muscle and Nerve 7, 110–120.

    PubMed  CAS  Google Scholar 

  • Rudolph J. A., Spier S. J., Byrns G., Rojas C. V., Bernoco D., and Hoffman E. P. (1992) Periodic paralysis in Quarter Horses: a sodium channel mutation disseminated by selective breeding.Nat. Gen. 2, 144–147.

    CAS  Google Scholar 

  • Rudy B., Kirschenbaum B., Rukenstein A., and Greene L. A. (1987) Nerve growth factor increases the number of functional Na channels and induces TTX-resistant Na channels in PC12 pheochromocytoma cells.J. Neurosci. 7(6), 1613–1635.

    PubMed  CAS  Google Scholar 

  • Salgado V. L., Yeh J. Z., and Narahashi T. (1985) Voltage-dependent removal of sodium inactivation by N-bromoacetamide and pronase.Biophys. J. 47, 567–571.

    PubMed  CAS  Google Scholar 

  • Salkoff L., Baker K., Butler A., Covarrubia M., Pak M. D., and Wei A. (1992) An essential ‘set’ of K+ channels conserved in flies, mice and humans.Trends Neurosci. 15, 161–166.

    PubMed  CAS  Google Scholar 

  • Salkoff L., Butler A., Wei A., Scavarda A., Giffen K., Ifune C., Goodman R., and Mandel G. (1987) Genomic organization and deduced amino acid sequence of a putative sodium channel gene inDrosophila.Science 237(4816), 744–749.

    PubMed  CAS  Google Scholar 

  • Sartorelli V., Webster K. A., and Kedes L. (1990) Muscle-specific expression of the cardiac alpha-actin gene requires MyoD1, CArG-box binding factor, and Sp1.Genes Dev. 4(10), 1811–1822.

    PubMed  CAS  Google Scholar 

  • Satin J., Kyle J. W., Chen M., Bell P., Cribbs L. L., Fozzard H. A., and Rogart R. B. (1992) A mutant of TTX-resistant cardiac sodium channels with X-sensitive properties.Science 256, 1202–1205.

    PubMed  CAS  Google Scholar 

  • Sato C. and Matsumoto G. (1992b) Proposed tertiary structure of the sodium channel.Biochem. Biophys. Res. Commun. 186, 61–68.

    PubMed  CAS  Google Scholar 

  • Schaller K. L., Krzemien D. M., McKenna N. M., and Caldwell J. H. (1992) Alternatively spliced sodium channel transcripts in brain and muscle.J. Neurosci. 12(4), 1370–1381.

    PubMed  CAS  Google Scholar 

  • Scheuer T., McHugh L., Tejedor F., and Catterall W. (1988) Functional properties of neuraminidasetreated rat brain sodium.Biophys. J. 53, 541a.

    Google Scholar 

  • Schmidt J., Rossie S., and Catterall W. A. (1985) A large intracellular pool of inactive sodium channel α-subunits in developing rat brain.Proc. Natl. Acad. Sci. USA 82(14), 4847–4851.

    PubMed  CAS  Google Scholar 

  • Schmidt J. W. and Catterall W. A. (1986) Biosynthesis and processing of the α-subunit of the voltage-sensitive sodium channel in rat brain neurons.Cell 46(3), 437–446.

    PubMed  CAS  Google Scholar 

  • Schmidt J. W. and Catterall W. A. (1987). Palmitylation, sulfation, and glycosylation of the α-subunit of the sodium channel. Role of post-translational modifications in channel assembly.J. Biol. Chem. 262(28), 13,713–13,723.

    CAS  Google Scholar 

  • Schreibmayer W., Dascal N., Lotan I., Wallner M., and Weigl L. (1991) Molecular mechanism of protein kinase C modulation of sodium channel α-subunits expressed inXenopus oocytes.FEBS Lett. 291(2), 341–344.

    PubMed  CAS  Google Scholar 

  • Schubert B., Van Dongen A. M., Kirsch G. E., and Brown A. M. (1989) β-Adrenergic inhibition of cardiac sodium channels by dual G-protein pathways.Science 245, 516–519.

    PubMed  CAS  Google Scholar 

  • Schwarz T., Tempel B., Papazian D., Jan Y., and Jan L. (1988) Multiple potassium channel components are produced by alternative splicing at the Shaker locus inDrosophila.Nature 331, 137–142.

    PubMed  CAS  Google Scholar 

  • Seelig T. L. and Kendig J. J. (1982) Cyclic nucleotide modulation of sodium and potassium currents in the isolated node of Ranvier.Brain Res. 245, 144–147.

    PubMed  CAS  Google Scholar 

  • Sheng Z.-H., Barchi R. L., and Kallen R. G. (1993) Multiple positive and negative 5′-flanking segments control rat skeletal muscle voltage-sensitive sodium channel subtype 2 (SkM2) expression in skeletal muscle.DNA Cell Biol., in press.

  • Sherman S., Chrivia W., and Catterall W. (1985) Cyclic adenosine-3′,5′-monophosphate and cytosolic calcium exert opposing effects on biosynthesis of tetrodotoxin-sensitive sodium channels in rat muscle.J. Neurosci. 5, 1570–1576.

    PubMed  CAS  Google Scholar 

  • Shrager P. and Profera C. (1973) Inhibition of the receptor for tetrodotoxin in nerve membranes by reagents modifying carboxyl groups.Biochim. Biophys. Acta 318(1), 141–146.

    PubMed  CAS  Google Scholar 

  • Sigel E. (1987) Properties of single sodium channels translated byXenopus oocytes after injection with messenger RNA.J. Physiol. (Lond.) 386, 73–90.

    CAS  Google Scholar 

  • Sigworth F. J. and Neher E. (1980) Single Na+ channel currents observed in cultured rat muscle cells.Nature 287, 447–449.

    PubMed  CAS  Google Scholar 

  • Sills M. N., Xu Y. C., Baracchini E., Goodman R. H., Cooperman S. S., Mandel G., and Chien K. R. (1989) Expression of diverse Na+ channel messenger RNAs in rat myocardium. Evidence for a cardiac-specific Na+ channel.J. Clin. Invest. 84(1), 331–336.

    PubMed  CAS  Google Scholar 

  • Smith R. D. and Goldin A. L. (1992) Protein kinase-A phosphorylation enhances sodium channel currents inXenopus oocytes.Am. J. Physiol. 263(3 Part 1), C660-C666.

    PubMed  CAS  Google Scholar 

  • Sorbera L. A. and Morad M. (1990) Atrionatriuretic peptide transforms cardiac sodium channels into calcium-conducting channels.Science 247(4945), 73.

    Google Scholar 

  • Sorbera L. A. and Morad M. (1991) Modulation of cardiac sodium channels by cAMP receptors on the myocyte surface.Science 253(5025), 1286–1289.

    PubMed  CAS  Google Scholar 

  • Stühmer W., Conti F., Stocker M., Pongs O., and Heinemann S. H. (1991) Gating currents of inactivating and non-inactivating potassium channels expressed inXenopus oocytes.Pflugers Arch. 418(4), 423–429.

    PubMed  Google Scholar 

  • Stühmer W., Conti F., Suzuki H., Wang X., Noda M., Yahagi N., Kubo H., and Numa S. (1989) Structural parts involved in activation and inactivation of the sodium channel.Nature 339, 597–603.

    PubMed  Google Scholar 

  • Stühmer W., Methfessel C., Sakmann B., Noda M., and Numa S. (1987) Patch clamp characterization of sodium channels expressed from rat brain cDNA.Eur. Biophys. J. 14(3), 131–138.

    PubMed  Google Scholar 

  • Sumikawa K., Parker L., and Miledi R. (1984) Partial purification and functional expression of brain mRNAs coding for neurotransmitter receptors and voltage-operated channels.Proc. Natl. Acad. Sci. USA 81, 7994–7998.

    PubMed  CAS  Google Scholar 

  • Sutkowski E. M. and Catterall W. A. (1990) Beta-1 subunits of sodium channels studies with subunit-specific antibodies.J. Biol. Chem. 265(21), 12,393–12,399.

    CAS  Google Scholar 

  • Suzuki H., Beckh S., Kubo H., Yahagi N., Ishida H., Kayano T., Noda M., and Numa S. (1988) Functional expression of cloned complementary DNA encoding sodium channel III.FEBS Lett. 228(1), 195–200.

    PubMed  CAS  Google Scholar 

  • Tanabe T., Takeshima H., Mikami A., Flockerzi V., Takahashi H., Kangawa K., Kojima M., Matsuo H., Hirose T., and Numa S. (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle.Nature 328, 313–318.

    PubMed  CAS  Google Scholar 

  • Tanaka J. C., Doyle D. D., and Barr J. (1984) Sodium channels in vertebrate hearts three types of saxitoxin binding sites in hearts.Biochim. Biophys. Acta 775, 203–214.

    PubMed  CAS  Google Scholar 

  • Taouis M., Sheldon R. S., and Duff H. J. (1991a) Upregulation of the rat cardiac sodium channel by in vivo treatment with a class I antiarrhythmic drug.J. Clin. Invest. 88(2), 375–378.

    PubMed  CAS  Google Scholar 

  • Taouis M., Sheldon R. S., Hill R. J., and Duff H. J. (1991b) Cyclic AMP-dependent regulation of the number of [3H]-batrachotoxin benzoate binding sites on rat cardiac myocytes.J. Biol. Chem. 266(16), 10,300–10,304.

    CAS  Google Scholar 

  • Tejedor F. J. and Catterall W. A. (1988) Site of covalent attachment of α-scorpion toxin derivatives in domain I of the sodium channel α-subunit.Proc. Natl. Acad. Sci. USA 85, 8742–8746.

    PubMed  CAS  Google Scholar 

  • Terlau J., Heinemann S. H., Stühmer W., Pusch M., Conti F., Imoto K., and Numa S. (1991) Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II.FEBS Lett. 293(12), 93–96.

    PubMed  CAS  Google Scholar 

  • Thomsen W. J. and Catterall W. A. (1989) Localization of the receptor site for α scorpion toxins by antibody mapping: implications for sodium channel topology.Proc. Natl. Acad. Sci. USA 86(24), 10,161–10,165.

    CAS  Google Scholar 

  • Thornhill W. B. and Levinson S. R. (1987) Post-translational processing of the voltage-regulated sodium channel from eel electroplax. Symposium on molecular biology of intracellular protein sorting and organelle assembly held at the 16th annual meeting ofThe UCLA Symposia On Molecular And Cellular Biology, Los Angeles, CA.

  • Trimmer J. S., Cooperman S. S., Tomiko S. A., Zhou J. Y., Crean S. M., Boyle M. B., Kallen R. G., Sheng Z. H., Barchi R. L., and Sigworth F. J. (1989) Primary structure and functional expression of a mammalian skeletal muscle sodium channel.Neuron 3(1), 33–49.

    PubMed  CAS  Google Scholar 

  • Tytgat J., and Hess P. (1992) Evidence for cooperative interactions in potassium channel gating.Nature 359, 420–423.

    PubMed  CAS  Google Scholar 

  • Vassilev P., Scheuer T., and Catterall W. A. (1989) Inhibition of inactivation of single sodium channels by a site-directed antibody.Proc. Natl. Acad. Sci. USA 86, 8147–8151.

    PubMed  CAS  Google Scholar 

  • Vassilev P. M., Scheuer T., and Catterall W. A. (1988) Identification of an intracellular peptide segment involved in sodium channel inactivation.Science 241, 1658–1661.

    PubMed  CAS  Google Scholar 

  • Waechter C. J., Schmidt J. W., and Catterall W. A. (1983) Glycosylation is required for maintenance of functional sodium channels in neuro blastoma cells.J. Biol. Chem. 258(8), 5117–5123.

    PubMed  CAS  Google Scholar 

  • Warashina A., Ogura T., and Fujita S. (1988) Binding properties of sea anemone toxins to sodium channels in the crayfish giant axon.Com. Biochem. Physiol. C. Comp. Pharmacol. Toxicol. 90(2), 351–360.

    CAS  Google Scholar 

  • Weigele J. and Barchi R. (1982) Functional reconstitution of the purified sodium channel from rat sarcolemma.Proc. Natl. Acad. Sci. USA 79, 3651–3655.

    PubMed  CAS  Google Scholar 

  • West J. W., Numann R., Murphy B. J., Scheuer T., and Catterall W. A. (1991) A phosphorylation site in the Na+ channel required for modulation by protein kinase C.Science 254, 866–868.

    PubMed  CAS  Google Scholar 

  • West J. W., Patton D. E., Scheuer T., Wang Y., Goldin A. L., and Catterall W. A. (1992) A cluster of hydrophobic amino acid residues required for fast Na+ channel inactivation.Proc. Natl. Acad. Sci. USA 89, 10,910–10,914.

    CAS  Google Scholar 

  • White M. M., Chen L., Kleinfield R., Kallen R. G., and Barchi R. L. (1991) SkM2, a Na+ channel cDNA clone from denervated skeletal muscle, encodes a TTX-insensitive Na+ channel.Mol. Pharmacol. 39, 604–608.

    PubMed  CAS  Google Scholar 

  • Woosley R. L. (1991) Antiarrhythmic drugs.Ann. Rev. Pharmacol. Toxicol. 31, 427–455.

    CAS  Google Scholar 

  • Yamamoto D. (1985) The operation of the sodium channel in nerve and muscle.Prog. Neurobiol. (Oxf.) 24(4), 257–292.

    CAS  Google Scholar 

  • Yang J. and Barchi R. (1990) Phosphorylation of the rat skeletal muscle sodium channel by cyclic AMP-dependent protein kinase.J. Neurochem. 54(3), 954–962.

    PubMed  CAS  Google Scholar 

  • Yang J. S., Bennett P. B., Makita N., George A. F., and Barchi R. L. (1993) Expression of the sodium channel {ie428-1} subunit in rat skeletal muscle is selectively associated with the tetrodotoxin-sensitive α subunit isoform.Neuron 11, 915–922.

    PubMed  CAS  Google Scholar 

  • Yang J. R., Sladky J., Kallen R., and Barchi R. L. (1991) mRNA transcripts encoding the TTX sensitive and insensitive forms of the skeletal muscle sodium channel are independently regulated after denervation.Neuron 7, 421–427.

    PubMed  CAS  Google Scholar 

  • Yatani A., Okabe K., Codina J., Birnbaumer L., and Brown A. M. (1990) Heart rate regulation by G proteins acting on the cardiac pacemaker channel.Science 249(4973), 1163–1166.

    PubMed  CAS  Google Scholar 

  • Yellen G., Jurman M. E., Abramson T., and MacKinnon R. (1991) Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel.Science 251(4996), 939–942.

    PubMed  CAS  Google Scholar 

  • Yool A. J. and Schwarz T. L. (1991) Alteration of ionic selectivity of a K+ channel by mutation of the H5 region [see comments].NAT 349, 700–704.

    CAS  Google Scholar 

  • Zagotta W. N. and Aldrich R. A. (1990) Voltage-dependent gating of Shaker a-type potassium channels inDrosophila muscle.J. Gen. Physiol. 95(1), 29–60.

    PubMed  CAS  Google Scholar 

  • Zagotta W. N., Hoshi T., and Aldrich R. W. (1990) Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB.Science 250, 568–570.

    PubMed  CAS  Google Scholar 

  • Zhang J.-F., Robinson R. B., and Siegelbaum S. A. (1992) Sympathetic neurons mediate developmental change in cardiac sodium channel gating through long-term neurotransmitter action.Neuron 9, 97–103.

    PubMed  CAS  Google Scholar 

  • Zhou J., Potts F. F., Trimmer J. S., Agnew W. A., and Sigworth F. J. (1992) Multiple gating modes and the effect of modulating factors on the μl sodium channel.Neuron 7(5), 775–785.

    Google Scholar 

  • Zwerling S. J., Cohen S. A., and Barchi R. L. (1991) Analysis of protease-sensitive regions in the skeletal muscle sodium channelin vitro and implications for channel tertiary structure.J. Biol. Chem. 266(7), 4574–4580.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kallen, R.G., Cohen, S.A. & Barchi, R.L. Structure, function and expression of voltage-dependent sodium channels. Mol Neurobiol 7, 383–428 (1993). https://doi.org/10.1007/BF02769184

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02769184

Index Entries

Navigation