Skip to main content
Log in

The population biology of coevolution

  • Review
  • Published:
Researches on Population Ecology

Abstract

New populational approaches to the study of coevolution among species are confronting two major problems: the geographic scale at which coevolution proceeds, and the long-standing issue of how species may coevolve with more than one other species. By incorporating the ecological structure of life histories and populations into analyses of the coevolutionary process, these studies are indicating that coevolutionary change is much more ecologically dynamic than indicated by earlier work. Rather than simply a slow, stately process shaping species over long periods of time, parts of the coevolutionary process may proceed rapidly (sometimes observable in less than a decade), continually molding and remolding populations and communities locally and over broad geographic scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. M. and R. M. May (1991)Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford.

    Google Scholar 

  • Antonovics, J. (1994) The interplay of numerical and gene-frequency dynamics in host-pathogen systems. pp. 129–145.In L. A. Real (ed.)Ecological genetics. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Armbruster, W. S. (1990) Estimating and testing the shapes of adaptive surfaces: the morphology and pollination ofDalechampia blossoms.American Naturalist 135: 14–31.

    Article  Google Scholar 

  • Armbruster, W. S. (1993) Evolution of plant pollination systems: hypotheses and tests with the neotropical vineDalechampia.Evolution 47: 1480–1505.

    Article  Google Scholar 

  • Armbruster, W. S., J. J. Howard, T. P. Clausen, E. M. Debevec, J. C. Loquvam, M. Matsuki, B. Cerendolo and F. Andel(1997) Do biochemical exaptations link evolution of plant defense and pollination systems? Historical hypotheses and experimental tests withDalechampia vines.American Naturalist 149: 461–484.

    Article  Google Scholar 

  • Brown, J. M., O. Pellmyr, O., J. N. Thompson and R. G. Harrison (1994) Mitochondrial DNA phylogeny of the Prodoxidae (Lepidoptera: Invurvarioidea) indicates rapid ecological diversification of the yucca moths.Annals of the Entomological Society of America 87: 795–802.

    Google Scholar 

  • Brown, J. M., J. H. Leebens-Mack, J. N. Thompson, O. Pellmyr and R. G. Harrison(1997) Phylogeography and host association in a pollinating seed parasiteGreya politella (Lepidoptera: Prodoxidae).Molecular Ecology 6: 215–224.

    Article  PubMed  CAS  Google Scholar 

  • Burdon, J. J. (1994) The distribution and origin of genes for racespecific resistance toMelampsora lini inLinum marginale.Evolution 48: 1564–1575.

    Article  Google Scholar 

  • Burdon, J. J. and A. M. Jarosz (1991) Host-pathogen interactions in natural populations ofLinum marginale andMelampsora lini. I. Patterns of resistance and racial variation in a large host population.Evolution 45: 205–217.

    Article  Google Scholar 

  • Burdon, J. J. and J. N. Thompson (1995) Changed patterns of resistance in a population ofLinum marginale attacked by the rust pathogenMelampsora lini.Journal of Ecology 83: 199–206.

    Article  Google Scholar 

  • Davies, N. B. and M. de L. Brooke (1989) An experimental study of co-evolution between the cuckoo,Cuculus canorus, and its hosts. II. Host egg markings, chick discrimination and general discussion.Journal of Animal Ecology 58: 225–236.

    Article  Google Scholar 

  • Davis, D., O. Pellmyr, O. and J. N. Thompson(1992) Biology and systematics ofGreya Busck andTetragma n. gen. (Lepidoptera: Prodoxidae)Smithsonian Contributions to Zoology 524: 1–88.

    Google Scholar 

  • Dybdahl, M. F. and C. M. Lively (1996) The geography of coevolution: comparative population structures for a snail and its trematode parasite.Evolution 6: 2264–2275.

    Article  Google Scholar 

  • Ebert, D. (1994) Virulence and local adaptation of a horizontally transmitted parasite.Science 265: 1084–1086.

    Article  PubMed  Google Scholar 

  • Ebert, D. and W. D. Hamilton (1996) Sex against virulence: the coevolution of parasitic diseases.Trends in Ecology and Evolution 11: 79–82,

    Article  Google Scholar 

  • Ehrlich, P. R. and P. H. Raven (1964) Butterflies and plants: a study in coevolution.Evolution 18: 586–608.

    Article  Google Scholar 

  • Frank, S. A. (1992) Models of plant-pathogen coevolution.Trends in Genetics 8: 213–219.

    PubMed  CAS  Google Scholar 

  • Frank, S. A. (1993) Coevolutionary genetics of plants and pathogens.Evolutionary Ecology 7: 45–75.

    Article  Google Scholar 

  • Futuyma, D. J. and M. Slatkin (eds.) (1983)Coevolution. Sinauer Associates, Sunderland. Massachusetts, USA.

    Google Scholar 

  • Hamilton, W.D., R. Axelrod and R. Tanese(1990) Sexual reproduction as an adaptation to resist parasites (a review).Proceedings of the National Academy of Sciences of the USA 87: 3566–3573.

    Article  PubMed  CAS  Google Scholar 

  • Jarosz, A. M. and J. J. Burdon (1991) Host-pathogen interactions in natural populations ofLimum marginale andMelampsora lini, II. Local and regional variation in patterns of resistance and racial structure.Evolution 45: 1618–1627.

    Article  Google Scholar 

  • Janzen, D. H. (1966) Coevolution of mutualism between ants and acacias in Central America.Evolution 20: 249–275.

    Article  Google Scholar 

  • Janzen, D.H. (1980) When is it coevolution?Evolution 34: 611–612.

    Article  Google Scholar 

  • Kelley, S. E. (1994) Viral pathogens and the advantage of sex in the perennial grassAnthoxanthum odoratum.Philosophical Transactions of the Royal Society of London B 346: 295–302.

    Article  Google Scholar 

  • Komatsu, T. and S. Akimoto (1995) Genetic differentiation as a result of adaptation to the phenologies of individual host trees in the galling aphidKaltenbachiella japonica.Ecological Entomology 20: 33–42.

    Article  Google Scholar 

  • Kraaijeveld, A. R. and J. J. M. van Alphen (1994) Geographical variation in resistance of the parasitoidAsobara tabida against encapsulation byDrosophila melanogaster larvae: the mechanism explored.Physiological Entomology 19: 221–229.

    Google Scholar 

  • Kraaijeveld, A. R. and J. J. M. van Alphen (1995a) Geographical variation in encapsulation ability ofDrosophila melanogaster larvae and evidence for parasitoid-specific components.Evolutionary Ecology 9: 10–17.

    Article  Google Scholar 

  • Kraaijeveld, A. R. and J. J. M. van Alphen (1995b) Foraging behavior and encapsulation ability ofDrosophila melanogaster larvae: correlated polymorphisms? (Diptera: Drosophilidae).Journal of Insect Behavior 8: 305–314.

    Article  Google Scholar 

  • Kundu, R. and A. F. G. Dixon(1995) Evolution of complex life cycles in aphids.Journal of Animal Ecology 64: 245–255.

    Article  Google Scholar 

  • Lively, C. M. and J. Jokela (1996) Clinal variation for local adaptation in a host-parasite interaction.Proceedings of the Royal Society of London B 263: 891–897.

    Article  Google Scholar 

  • Mallett, J. M. and L. E. Gilbert (1995) Why are there so many mimicry rings? Correlations between habitat, behaviour, and mimicry inHeliconius butterflies.Biological Journal of the Linnean Society 55: 159–180.

    Article  Google Scholar 

  • May, R. M. and R. M. Anderson (1990) Parasite-host coevolution.Parasitology 100: 89–101.

    Google Scholar 

  • Meyer, A. (1990) Ecological and evolutionary consequences of the trophic polymorphism inCichlasoma citrinellum (Pisces: Cichlidae).Biological Journal of the Linnean Society 39: 279–299.

    Google Scholar 

  • Mopper, S. (1996) Adaptive genetic structure in phytophagous insect populations.Trends in Ecology and Evolution 11: 235–238.

    Article  Google Scholar 

  • Nitecki, M. H. (ed.) (1983)Coevolution. University of Chicago Press, Chicago.

    Google Scholar 

  • Ohgushi, T. and H. Sawada (1997) A shift toward early reproduction in an introduced herbivorous ladybird.Ecological Entomology 22: 90–96.

    Article  Google Scholar 

  • Pellmyr, O. and J. N. Thompson (1992) Multiple occurrences of mutualism in the yucca moth lineage.Proceedings of the National Academy of Sciences of the USA 89: 2927–2929.

    Article  PubMed  CAS  Google Scholar 

  • Pellmyr, O., J. H. Leebens-Mack and C. J. Huth(1996a) Nonmutualistic yucca moths and their evolutionary consequences.Nature 380: 154–156.

    Article  Google Scholar 

  • Pellmyr, O., J. N. Thompson, J. M. Brown and R. G. Harrison (1996b) Evolution of pollination and mutualism in the yucca moth lineage.American Naturalist 148: 827–847.

    Article  Google Scholar 

  • Reznick, D.N., F. H. Shaw, F. H. Rod and R. G. Shaw(1997) Evaluation of the rate of evolution in natural populations of guppies(Poecilia reticulata).Science 275: 1934–1936.

    Article  PubMed  CAS  Google Scholar 

  • Ritland, D.B. (1995) Comparative unpalatability of viceroy butterflies(Limenitis archippus) from four south-eastern United States populations.Oecologia 103: 327–336.

    Article  Google Scholar 

  • Roughgarden, J. (1995)Anolis lizards of the Caribbean: ecology, evolution, and plate tectonics.Oxford University Press, Oxford.

    Google Scholar 

  • Snorrason, S. S., S. Skulason, B. Jonsson, H. J. Malmquist, P. M. Jonasson, O. T. Sandlund and T. Lindem(1994) Trophic specialization in Arctic charrSalvelinus alpinus (Pisces, Salmonidae) —morphological divergence and ontogenetic niche shifts.Biological Journal of the Linnean Society 52: 1–18.

    Article  Google Scholar 

  • Stone, A. R. and R. L. Hawksworth(eds.) (1986)Coevolution and systematics. Clarendon Press, Oxford.

    Google Scholar 

  • Thompson, J. N. (1982)Interaction and coevolution.Wiley, New York.

    Google Scholar 

  • Thompson, J. N. (1987) Variance in the number of eggs per patch: oviposition behaviour and population dispersion in a seed parasitic moth.Ecological Entomology 12: 311–320.

    Google Scholar 

  • Thompson, J. N. (1994)The coevolutionary process.University of Chicago Press, Chicago.

    Google Scholar 

  • Thompson, J. N. (1997) Evaluating the dynamics of coevolution among geographically structured populations.Ecology 78: 1619–1623.

    Article  Google Scholar 

  • Thompson, J. N. (1998) What we know and do now know about coevolution: insect herbivores and plants as a test case.Symposia of the British Ecological Society (in press)

  • Thompson, J. N. and J. J. Burdon (1992) Gene-for-gene coevolu-tion between plants and parasites.Nature 360: 121–125.

    Article  Google Scholar 

  • Thompson, J. N. and O. Pellmyr (1992) Mutualism with pollinating seed parasites amid co-pollinators.Ecology 73: 1780–1791.

    Article  Google Scholar 

  • Thompson, J. N., B. M. Cunningham, K. A. Segraves, D. M. Althoff and D. Wagner(1997) Plant polyploidy and insect/plant interactions.American Naturalist 150: 730–743.

    Article  PubMed  CAS  Google Scholar 

  • Werner, E. E. and J. F. Gilliam(1984) The ontogenetic niche and species interactions in size-structure populations.Annual Review of Ecology and Systematics 15: 393–425

    Article  Google Scholar 

  • Yoshimura, J. and V. A. A. Jansen(1996) Evolution and population dynamics in stochastic environments.Researches on Population Ecology 38: 165–182.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John N. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, J.N. The population biology of coevolution. Res Popul Ecol 40, 159–166 (1998). https://doi.org/10.1007/BF02765236

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02765236

Key words

Navigation