Skip to main content
Log in

Transcendental division algebras and simple Noetherian rings

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we prove the following theorem:

Let D be a division ring with center the field k, and let k (x 1, …, xn) denote the rational function field in n variables over k. If D contains a maximal subfield which has transcendence degree at least n over k, then D ⊗k k (x1, …, xn) is a simple Noetherian domain of Krull and global dimensions n.

Rather surprisingly, the preceding result can be used to determine the maximum transcendence degrees of the commutative subalgebras of several classically studied division rings. Using the theorem we prove, for example, that in the division ring of quotients of the Weyl algebra,A n, every maximal subfield has transcendence degree at mostn over the center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Amitsur,Algebras over infinite fields, Proc. Amer. Math. Soc.7 (1956), 35–48.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. A. Amitsur,Commutative linear differential operators, Pacific J. Math.8 (1958), 1–10.

    MATH  MathSciNet  Google Scholar 

  3. S. A. Amitsur and L. W. Small,Prime PI-rings, Bull. Amer. Math. Soc.83 (1977), 249–251.

    MATH  MathSciNet  Google Scholar 

  4. S. A. Amitsur and L. W. Small,Polynomials over division rings, Israel J. Math.31 (1978),

  5. H. Cartan and S. Eilenberg,Homological Algebra. Princeton University Press, Princeton, 1956.

    MATH  Google Scholar 

  6. P. M. Cohn,Algebra, Vol. 2, John Wiley and Sons, London-New York, 1977.

    MATH  Google Scholar 

  7. J. Cozzens and C. Faith,Simple Noetherian Rings, Cambridge University Press, Cambridge, 1975.

    MATH  Google Scholar 

  8. P. Gabriel and R. Rentschler,Sur la dimension des anneaux et ensembles ordonnes, C. R. Acad. Sci. Paris Ser. A,265 (1967), 712–715.

    MATH  MathSciNet  Google Scholar 

  9. R. Hart,Krull dimension and global dimension of simple Ore extensions, Math. Z.121 (1971), 341–345.

    Article  MathSciNet  Google Scholar 

  10. N. Jacobson,The Theory of Rings, Amer. Math. Soc. Surveys2, 1943.

  11. N. Jacobson,The Structure of Rings, rev. edn., Amer. Math. Soc. Colloq. Publ.37, 1964.

  12. D. Jordan,Primitive Ore extensions, Glasgow Math. J.18 (1977), 93–97.

    Article  MATH  MathSciNet  Google Scholar 

  13. I. Kaplansky,Fields and Rings, 2nd edn., University of Chicago Press, Chicago, 1972.

    MATH  Google Scholar 

  14. I. Kaplansky,Commutative Rings, rev. edn., University of Chicago Press, Chicago, 1974.

    MATH  Google Scholar 

  15. H. Matsumura,Commutative Algebra, W. A. Benjamin, New York, 1970.

    MATH  Google Scholar 

  16. D. G. Northcott,Lessons on Rings, Modules, and Multiplicities, Cambridge University Press, Cambridge, 1968.

    MATH  Google Scholar 

  17. G. S. Rinehart,Note on the global dimension of a certain ring, Proc. Amer. Math. Soc.13 (1962), 341–346.

    Article  MathSciNet  Google Scholar 

  18. J. C. Robson,Indealizer rings, inRing Theory (Robert Gordon, ed.), Academic Press, New York, 1972, pp. 309–317.

    Google Scholar 

  19. J. E. Roos,Determination de la dimension homologique globale des algebres de Weyl, C. R. Acad. Sci. Paris Ser. A,274 (1972), 23–26.

    MATH  MathSciNet  Google Scholar 

  20. R. Y. Sharp,The dimension of the tensor product of two field extensions, Bull. Lond. Math. Soc.9 (1977), 42–48.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. T. Stafford,Completely faithful modules and ideals of simple Noetherian rings, Bull. Lond. Math. Soc.8 (1976), 168–173.

    Article  MATH  MathSciNet  Google Scholar 

  22. B. Stenström,Rings of Quotients, Springer, Berlin-New York, 1975.

    MATH  Google Scholar 

  23. R. Walker,Local rings and normalizing sets of elements, Proc. London Math. Soc. (3)24 (1972), 27–45.

    Article  MATH  MathSciNet  Google Scholar 

Additional References

  1. E. Artin and G. Whaples,The theory of simple rings, Amer. J. Math.65 (1943), 87–107.

    Article  MATH  MathSciNet  Google Scholar 

  2. G. M. Bergman,Centralizers in free associative algebras, Trans. Amer. Math. Soc.137 (1969), 327–344.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Resco, R. Transcendental division algebras and simple Noetherian rings. Israel J. Math. 32, 236–256 (1979). https://doi.org/10.1007/BF02764919

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02764919

Keywords

Navigation