Skip to main content
Log in

Reverse Transcriptase

The use of cloned moloney murine leukemia virus reverse transcriptase to synthesize DNA from RNA

  • Protocol
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Reverse transcriptase (RT) is the key enzyme required for conversion of RNA to DNA. Cloning of Moloney murine leukemia virus (MMLV) RT has enable engineering an RT that lacks endogenous RNase H activity. RT catalyzes cDNA synthesis more efficiently in the absence of RNase H. We describe here a number of properties of MMLV RT and RNase H-minus MMLV RT not summarized in a single location elsewhere, providing a basis for best use of these enzymes in cDNA synthesis. In addition, general guidelines and detailed protocols are provided for use of MMLV RTs in one tube double-stranded cDNA synthesis, in [32P]cDNA synthesis, and in RT-PCR and long RT-PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baltimore, D. (1970) Viral RNA-dependent DNA polymerase.Nature 226, 1209–1211.

    Article  PubMed  CAS  Google Scholar 

  2. Termin, H. M. and Mizutani, S. (1970) RNA-dependent DNA polymerase in virions of Rous sarcoma virus.Nature 226, 1211–1213.

    Article  Google Scholar 

  3. Ross, J., Aviv, H., Scolnick, E., and Leder, P. (1972)In vitro synthesis of DNA complementary to purified rabbit globin mRNA.Proc. Natl. Acad. Sci. USA 69, 264–268.

    Article  PubMed  CAS  Google Scholar 

  4. Verma, I. M., Temple, G. F., Fan, H., and Baltimore, D. (1972)In vitro synthesis of DNA complementary to rabbit reticulocyte 10S RNA.Nat. N. Biol. 235, 163–167.

    Article  CAS  Google Scholar 

  5. Kacian, D. L., Spiegelman, S., Bank, A., Terada, M., Metafora, S., Dow, L., and Marks, P. A. (1972)In vitro synthesis of DNA components of human genes for globins.Nat. N. Biol. 235, 167–169.

    Article  CAS  Google Scholar 

  6. Maniatis, T., Kee, S. G., Efstratiadis, A., and Kafatos, F. C. (1976) Amplification and characterization of a β-globin gene synthesizedin vitro.Cell 8, 163–182.

    Article  PubMed  CAS  Google Scholar 

  7. Gerard, G. F., D'Alessio, J. M., and Kotewicz, M. L. (1989) cDNA synthesis by cloned Moloney murine leukemia virus reverse transcriptase lacking RNase H activity.Focus 11, 66–69.

    Google Scholar 

  8. Krug, M. S. and Berger, S. L. (1987) First strand cDNA synthesis primed with oligo(dT).Method Enzymol. 152, 316–325.

    CAS  Google Scholar 

  9. Gubler, U. (1987) Second-strand cDNA synthesis: mRNA fragments as primers.Methods Enzymol. 152, 330–335.

    PubMed  CAS  Google Scholar 

  10. Gubler, U. and Chua, A. O. (1989) The establishment of cDNA libraries in lambda gt10, inBasic Molecular Biology, A Practical Approach, vol. 2 (Brown, T. A., ed.), IRL Press, New York, NY, pp. 39–56.

    Google Scholar 

  11. Mallet, F., Oriol, G., Mary, C., Verrier, B., and Mandrand, B. (1995) Continuous RT-PCR using AMV RT and Taq DNA polymerase: Characterization and comparison to uncoupled procedures.Bio Techniques 18, 678–687.

    CAS  Google Scholar 

  12. Chen, D., Magnuson, V. L., Steffensen, B., and Klebe, R. J. (1993) Use of stock solutions of simplify mRNA quantitation by reverse transcription—PCR Assays.PCR Methods Appl. 2, 351–353.

    PubMed  CAS  Google Scholar 

  13. Gerard, G. F. (1985) Comparison of cDNA synthesis by avian and cloned murine reverse transcriptase.Focus 7(1), 1–3.

    Google Scholar 

  14. Kotewicz, M. L., D'Alessio, J. M., Driftmier, K. M., Blodgett, K. P., and Gerard, G. F. (1985) Cloning and overexpression of Moloney murine leukemia virus reverse transcriptase inE. coli.Gene 35, 249–258.

    Article  PubMed  CAS  Google Scholar 

  15. Gerard, G. F., D'Alessio, J. M., Kotewicz, M. L., and Noon, M. C. (1986) Influence on stability inE. coli of the carboxy-terminal structure of cloned Moloney murine leukemia virus reverse transcriptase.DNA 5, 271–279.

    PubMed  CAS  Google Scholar 

  16. Roth, M. J., Tanese, N., and Goff, S. P. (1985) Purification and characterization of murine retroviral reverse transcriptase expressed inE. coli.J. Biol. Chem. 260, 9326–9335.

    PubMed  CAS  Google Scholar 

  17. D'Alessio, J. M., Noon, M. C., Ley, H. L., and Gerard, G. F. (1986) One-tube double-stranded cDNA synthesis using cloned MMLV reverse transcriptase.Focus 9(1), 1–4.

    Google Scholar 

  18. Gerard, G. F. (1986) Making effective use of cloned MMLV reverse transcriptase.Focus 9(2), 5,6.

    Google Scholar 

  19. Gerard, G. F. (1988) Synthesis of high specific activity cDNA.Focus 10, 12,13.

    Google Scholar 

  20. D'Alessio, J. M. and Gerard, G. F. (1988) Second-strand cDNA synthesis withE. coli DNA polymerase I and RNase H: fate of information at the mRNA 5′ terminus and the effect ofE. coli DNA ligase.Nucl. Acids Res. 16, 1999–2014.

    Article  PubMed  Google Scholar 

  21. Kotewicz, M. L., Sampson, C. M., D'Alessio, J. M., and Gerard, G. F. (1988) Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribonuclease H activity.Nucl. Acids Res. 16, 262–277.

    Article  Google Scholar 

  22. Gerard, G. F., Schmidt, B. J., Kotewicz, M. L., and Campbell, J. H. (1992) cDNA synthesis by Moloney murine leukemia virus RNAse H-minus reverse transcriptase possessing full DNA polymerase activity.Focus 14(3), 91–93.

    Google Scholar 

  23. Houts, G. E., Miyagi, M., Ellis, C., Beard, D., and Beard, J. M. (1979) Reverse transcriptase from avian myeloblastosis virus.J. Virol. 29, 517–522.

    PubMed  CAS  Google Scholar 

  24. Gerard, G. F. (1983) Reverse transcriptase, inEnzymes of Nucleic Acid Synthesis and Modification, vol I,DNA Enzymes (Jacob, S. T., ed.), CRC Press, Boca Raton, FL, pp. 1–38.

    Google Scholar 

  25. Matson, S. W., Fay, P. J., and Bambara, R. A. (1980) Mechanism of inhibition of the avian myeloblastosis virus deoxyribonucleic acid polymerase by adriamycin.Biochem. 19, 2089–2096.

    Article  CAS  Google Scholar 

  26. Huber, H. E., McCoy, J. M., Seehra, J. S., and Richardson, C. C. (1989) Human immunodeficiency virus 1 reverse transcriptase. Template binding, processivity, strand displacement synthesis, and template switching.J. Biol. Chem. 264, 4669–4678.

    PubMed  CAS  Google Scholar 

  27. Roberts, J. D., Beberek, K. and Kunkel, T. A. (1988) The accuracy of reverse transcriptase from HIV-1.Science 242, 1171–1173.

    Article  PubMed  CAS  Google Scholar 

  28. Verma, I. M. (1977) The reverse transcriptase.Biochem. Biophys. Acta 473, 1–38.

    PubMed  CAS  Google Scholar 

  29. Berger, S. L., Wallace, D. M., Puskas, R. S., and Eschenfeldt, W. H. (1983) Reverse transcriptase and its associated ribonuclease H: Interplay of two enzyme activities controls the yield of single-stranded complementary deoxyribonucleic acid.Biochem. 22, 2365–2372.

    Article  CAS  Google Scholar 

  30. Han, J. H., Stratowa, C., and Rutter, W. J. (1987) Isolation of full-length putative rat lysophospholipase cDNA using improved methods for mRNA isolation and cDNA cloning.Biochem. 26, 1617–1625.

    Article  CAS  Google Scholar 

  31. Han, J. H. and Rutter, W. J. (1988) Isolation of intact mRNA and construction of full-length cDNA librarties: Use of a new vwctor, λgt22, and primer-adapters for directional cDNA cloning, inGenetic Engineering, Principles and Methods, vol. 10 (Setlow, J. K., ed.), Plenum, New York, pp. 195–219.

    Google Scholar 

  32. Aviv, H. and Leder, P. (1972) Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid cellulose.Proc. Natl. Acad. Sci. USA 69, 1408–1412.

    Article  PubMed  CAS  Google Scholar 

  33. Rappollee, D. A., Mark, D., Banda, M. J., and Werb, Z. (1988) Wound macrophages express TGF-α and other growth factorsin vivo: analysis by mRNA phenotyping.Science 241, 708–712.

    Article  Google Scholar 

  34. Doherty, P. J., Huesca-Contreras, M., Dosch, H. M., and Pan, S. (1989) Rapid amplification of complementary DNA from small amounts of unfractionated RNA.Anal. Biochem. 177, 7–10.

    Article  PubMed  CAS  Google Scholar 

  35. Grady L. J. and Campbell, W. P. (1989) Amplification of large RNAs (>1.5 Kb) by polymerase chain reaction.Bio Techniques 7, 798–800.

    CAS  Google Scholar 

  36. Carothers, A. M., Urlaub, G., Mucha, J., Grunberger, D., and Chasin, L. A. (1989) Point mutation analysis in a mammalian gene: Rapid preparation of total RNA, PCR amplification of cDNA, andTaq sequencing by a novel method.BioTechniques 7, 494–499.

    PubMed  CAS  Google Scholar 

  37. Rutledge, R. G., Seligy, V. L., Cote, M. J., Dimock, K., Lewin, L. L., and Tenniswood, M. (1988) Rapid synthesis and cloning of complementary DNA from any RNA molecule into plasmid and phage M13 vectors.Gene 68, 151–158.

    Article  PubMed  CAS  Google Scholar 

  38. Helfman, D. M., Fiddes, J. C., and Hanahan, D. (1987) Directional cDNA cloning in plasmid vectors by sequential addition of oligonucleotide linkers.Methods Enzymol. 152, 349–359.

    Article  PubMed  CAS  Google Scholar 

  39. Huynh, T. V., Young, R. A., and Davis, R. W. (1985) Constructing and screening cDNA libraries in λgt10 and λgt11, inDNA Cloning, A Practical Approach, vol. 1 (Glover, D. M., ed.), IRL, Washington, DC, pp. 49–78.

    Google Scholar 

  40. Polazzolo, M. J. and Meyerowitz, E. M. (1987) A family of lamba phage cDNA cloning vectors, λSWAJ, allowing the amplification of RNA sequences.Gene 52, 197–206.

    Article  Google Scholar 

  41. Duguid, J. R., Rohwer, R. G., and Seed, B. (1988) Isolation of cDNAs of scrapie-modulated RNAs by subtractive hybridization of a cDNA library.Proc. Natl. Acad. Sci. USA 85, 5738–5742.

    Article  PubMed  CAS  Google Scholar 

  42. Travis, G. H. and Sutcliffe, J. G. (1988) Phenol emulsion-enhanced DNA-driven subtractive cDNA cloning: Isolation of low abundance monkey cortex-specific mRNAs.Proc. Natl. Acad. Sci. USA 85, 1696–1700.

    Article  PubMed  CAS  Google Scholar 

  43. Liang, P. and Pardee, A. B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction.Science 257, 967–971.

    Article  PubMed  CAS  Google Scholar 

  44. Liang, P., Averboukh, L., and Pardee, A. B. (1993) Distribution and cloning of eukaryotic mRNAs by menas of differential display: refinements and optimization.Nucleic Acids Res. 21, 3269–3275.

    Article  PubMed  CAS  Google Scholar 

  45. Bauer, D., Warthoe, P., Rohde, M., and Strauss, M. (1994) Detection and differential display of expressed genes by DDRT-PCR.PCR Methods Appl. 4, S97-S108.

    PubMed  CAS  Google Scholar 

  46. Dorson, N. D., Salo, W. L., and Drewes, L. R. (1992) A lock-docking oligo(dT) primer for 5′ and 3′ RACE PCR.PCR Methods Appl. 2, 144–148.

    Google Scholar 

  47. Kacian, D. L. and Myers, J. C. (1976) Synthesis of extensive, possibly complete, DNA copies of polio-virus RNA in high yields and at high specific activaties.Proc. Natl. Acad. Sci. USA 73, 2191–2195.

    Article  PubMed  CAS  Google Scholar 

  48. Myers, J. C., Spiegelman, S., and Kacian, D. L. (1977) Synthesis of full-length DNA copies of avian myeloblastosis virus RNA in high yields.Proc. Natl. Acad. Sci. USA 74, 2840–2843.

    Article  PubMed  CAS  Google Scholar 

  49. Myers, J. C. and Spiegelman, S. (1978) Sodium pyrophosphate inhibition of RNA DNA hybrid degradation by reverse transcriptase.Proc. Natl. Acad. Sci. USA 75, 5329–5333.

    Article  PubMed  CAS  Google Scholar 

  50. Srivastava, A. and Modak, M. J. (1979) Reverse transcriptase-associated RNase H. Part IV. Pyrophosphate does not inhibit RNase H activity of AMV DNA polymerase.Biochem. Biophys. Res. Commun. 91, 892–899.

    PubMed  CAS  Google Scholar 

  51. Marcus, S. L., Smith, S. W., and Bacchi, C. J. (1981) Polyamines, stimulate natural RNA-directed DNA synthesis by Rauscher murine leukemia virus DNA polymerase.Biochem. Biophys. Res. Commun. 99, 1361–1368.

    Article  PubMed  CAS  Google Scholar 

  52. McDonnell, J. P., Garapin, A. C., Levinson, W. E., Qunitrell, N., Fanshier, L., and Bishop, J. M. (1970) DNA polymerases of Rous sarcoma virus: delineation of two reactions with actinomycin.Nature 228, 433–435.

    Article  PubMed  CAS  Google Scholar 

  53. Bunte, T., Novak, U., Friedrich, R., and Moelling, K. (1980) Effect of actinomycin D on nucleic acid hybridization. The cause of erroneous DNA elongation during DNA synthesis of RNA tumor virusesin vitro.Biochem. Biophys. Acta. 610, 241–247.

    PubMed  CAS  Google Scholar 

  54. Okayama, H. and Berg, P. (1982) High-efficiency cloning of full-length cDNA.Mol. Cell Biol. 2, 161–170.

    PubMed  CAS  Google Scholar 

  55. Gubler, U. and Hoffman, B. J. (1983) A simple and very efficient method for generating cDNA libraries.Gene 25, 263–269.

    Article  PubMed  CAS  Google Scholar 

  56. Gause, W. C. and Adamovicz, J. (1995) Use of PCR to quantitave relative differences in gene expression, inPCR Primer, A Laboratory Manual (Dieffenbach, C. W. and Dveksler, G. S., eds.), CSHL Press, Plainview, NY, pp. 293–311.

    Google Scholar 

  57. Kawasaki, E. S. (1990) Amplification of RNA, inPCR Protocols, A Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Shinsky, J. J., and White, T. J., eds.), Academic, New York, pp. 21–27.

    Google Scholar 

  58. Nathan, M., Mertz, L. M., and Fox, D. K. (1995) Optimizing long RT-PCR.Focus 17(3), 78–80.

    Google Scholar 

  59. Gustafson, C. E., Alm, R. A., and Trust, T. J. (1993) Effect of heat denaturation of target DNA on the PCR amplification.Gene 123, 241–244.

    Article  PubMed  CAS  Google Scholar 

  60. Westfall, B., Sitaraman, K., Berninger, M., and Mertz, L. M. (1995) ELONGASETM, reagents for amplification of long DNA templates.Focus 17(2, 62–65.

    Google Scholar 

  61. Wu, R., Wu, T., and Ray, A. (1987) Adaptors, linkers, and methylation.Methods Enzymol. 152, 343–349.

    PubMed  CAS  Google Scholar 

  62. Belyavsky, A., Vinogradova, T., and Rajewsky, K. (1989) PCR-based cDNA library construction: general cDNA libraries at the level of a few cells.Nucleic Acids Res. 17, 2919–2932.

    Article  PubMed  CAS  Google Scholar 

  63. Saiki, R. K. (1989) The design and optimization of PCR, inPCR Technology, Principles and Applications for DNA Amplification (Erlich, H. A., ed.). Stockton, New York, pp. 7–16.

    Google Scholar 

  64. Innis, M. A. and Gelfand, D. H. (1990) Optimization of PCRs, inPCR Protocols. A Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Shinsky, J. J., and White, T. J., eds.), Academic, New York, pp. 3–12.

    Google Scholar 

  65. D'Aquila, R. T., Bechtel, L. J., Videler, J. A., Eron, J. J., Gorczya, P., and Kaplan, J. C. (1991) Maximizing sensitivity and specificity of PCR by pre-amplification heating.Nucleic Acids Res. 19, 3749.

    Article  PubMed  Google Scholar 

  66. Mullis, K. B. (1991) The polymerase chain reaction in an anemic mode. How to avoid cold oligodeoxyribonuclear fusion.PCR Methods Appl. 1, 1–4.

    PubMed  CAS  Google Scholar 

  67. McDonnel, M. W., Simon, M. N., and Studier, F. W. (1977) Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels.J. Mol. Biol. 10, 119–146.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary F. Gerard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerard, G.F., Fox, D.K., Nathan, M. et al. Reverse Transcriptase. Mol Biotechnol 8, 61–77 (1997). https://doi.org/10.1007/BF02762340

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02762340

Index Entries

Navigation