Skip to main content
Log in

Contact points of convex bodies

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

LetB be a convex body in ℝn and let ɛ be an ellipsoid of minimal volume containingB. By contact points ofB we mean the points of the intersection between the boundaries ofB and ɛ. By a result of P. Gruber, a generic convex body in ℝn has (n+3)·n/2 contact points. We prove that for every ɛ>0 and for every convex bodyB ⊂ ℝn there exists a convex bodyK having

$$m \leqslant C(\varepsilon ) \cdot n\log ^3 n$$

contact points whose Banach-Mazur distance toB is less than 1+ɛ.

We prove also that for everyt>1 there exists a convex symmetric body Γ ⊂ ℝn so that every convex bodyD ⊂ ℝn whose Banach-Mazur distance to Γ is less thant has at least (1+c 0/t 2n contact points for some absolute constantc 0.

We apply these results to obtain new factorizations of Dvoretzky-Rogers type and to estimate the size of almost orthogonal submatrices of an orthogonal matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [B1] K. Ball,Volumes of sections of cubes and related problems, Lecture Notes in Mathematics1376, Springer, Berlin, 1989, pp. 251–260.

    Google Scholar 

  • [B2] K. Ball,Volume ratios and a reverse isoperimetric inequality, Journal of the London Mathematical Society44 (1991), no. 2, 351–359.

    Article  MATH  MathSciNet  Google Scholar 

  • [B-S] J. Bourgain and S. Szarek,The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization, Israel Journal of Mathematics62 (1988), 169–180.

    MATH  MathSciNet  Google Scholar 

  • [Gi1] A. A. Giannopoulos,A note on the Banach-Mazur distance to the cube, Operator Theory Advances and Applications77 (1995), 67–73.

    MathSciNet  Google Scholar 

  • [Gi2] A. A. Giannopoulos,A proportional Dvoretzky-Rogers factorization result, Preprint.

  • [G1] E. Gluskin,The diameter of the Minkowski compactum is approximately equal to n, Functional Analysis and its Applications15 (1981), 72–73 (in Russian).

    Article  MathSciNet  Google Scholar 

  • [G2] E. Gluskin,Finite dimensional analogs of spaces without basis, Doklady Adakemii Nauk SSSR216 (1981), 1046–1050 (in Russian).

    MathSciNet  Google Scholar 

  • [Gr] M. Gruber,Minimal ellipsoids and their duals, Rendiconti del Circolo Matematico di Palermo, Ser. 237 (1988), 35–64.

    MATH  MathSciNet  Google Scholar 

  • [J] F. John,Extremum problems with inequalities as subsidiary conditions, inCourant Anniversary Volume, Interscience, New York, 1948, pp. 187–204.

    Google Scholar 

  • [K-T] B. Kashin and L. Tzafriri,Some remarks on the restrictions of operators to coordinate subspaces, Preprint.

  • [L-T] M. Ledoux and M. Talagrand,Probability in Banach spaces, Ergeb. Math. Grenzgeb., 3 Folge, vol. 23, Springer, Berlin, 1991.

    MATH  Google Scholar 

  • [Pa-T-J] A. Pajor and N. Tomczak-Jaegermann,Subspaces of small codimension of finite dimensional Banach spaces, Proceedings of the American Mathematical Society97 (1986), 637–642.

    Article  MATH  MathSciNet  Google Scholar 

  • [P-T-J] A. Pelczynski and N. Tomczak-Jaegermann,On the length of faithful nuclear representations of finite rank operators, Mathematika35 (1988), no. 1, 126–143.

    Article  MATH  MathSciNet  Google Scholar 

  • [R] M. Rudelson,Approximate John’s decompositions, Operator Theory Advances and Applications77 (1995), 245–249.

    MathSciNet  Google Scholar 

  • [S1] S. Szarek,The finite dimensional basis problem, with an appendix on nets on Grassman manifold, Acta Mathematica151 (1983), 153–179.

    Article  MATH  MathSciNet  Google Scholar 

  • [S2] S. Szazek, Spaces with large distance to ℓ n and random matrices, American Journal of Mathematics112 (1990), 899–942.

    Article  MathSciNet  Google Scholar 

  • [S-T] S. Szarek and M. Talagrand,An isomorphic version of the Sauer-Shelah lemma and the Banach-Mazur distance to the cube, Lecture Notes in Mathematics1376, Springer-Verlag, Berlin, 1989, pp. 105–112.

    Google Scholar 

  • [T] M. Talagrand,Construction of majorizing measures, Bernoulli processes and cotype, Geometric and Functional Analysis4 (1994), 660–717.

    Article  MATH  MathSciNet  Google Scholar 

  • [T-J] N. Tomczak-Jaegermann,Banach-Mazur Distances and Finite Dimensional Operator Ideals, Pitman Monographs,38, Longman, 1989.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rudelson.

Additional information

Research supported in part by a grant of the US-Israel BSF.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudelson, M. Contact points of convex bodies. Isr. J. Math. 101, 93–124 (1997). https://doi.org/10.1007/BF02760924

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02760924

Keywords

Navigation