Skip to main content
Log in

Prediction of the exon-intron structure by comparison of genomic sequences

  • Genomics. Proteomics. Bioinformatics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

An algorithm for prediction of the exon-intron structure of higher eukaryotic genes is suggested. The algorithm is based on comparison of genomic sequences of homologous genes from different species. It uses the fact that protein-coding sequences evolve slower than noncoding regions. Unlike the existing comparison methods, the proposed algorithm, which is a modified version of splicing alignment, compares not nucleotide but amino acid sequences, which increases its sensitivity. Conservation of the exon-intron structures of the compared genes is not assumed. The algorithm is implemented in the program Pro-Gen. The testing of the algorithm demonstrated that it can be successfully applied to prediction of vertebrate genes, and in some cases, for more distant comparisons (e.g., vertebrates and insects or nematodes). Thus, the program can be used for prediction of human genes by comparison with genes of model organisms: mouse, fugu, drosophila, and nematode. The algorithm overcomes deficiencies of the existing methods, both statistical (insufficient reliability) and similarity-based (inapplicability to completely new genes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gelfand, M.S., Mironov, A.M., and Pevzner, P.A.,Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 9061–9066.

    Article  PubMed  CAS  Google Scholar 

  2. Mironov, A.M., Roytberg, M.A., Pevzner, P.A., and Gelfand, M.S.,Genomics, 1998, vol. 51, pp. 332–339.

    Article  PubMed  CAS  Google Scholar 

  3. Burset, M., and Guigo, R.,Genomics, 1996, vol. 34, pp. 353–367.

    Article  PubMed  CAS  Google Scholar 

  4. Ansari-Lari, M.A., Oeltjen, J.C., Schwartz, S., Zhang, Z., Muzny, D.M., Lu, J., Gorrell, J.H., Chinault, A.C., Belmont, J.W., Miller, W., and Gibbs, R.A.,Genome Res., 1998, vol. 8, pp. 29–40.

    PubMed  CAS  Google Scholar 

  5. Thacker, C., Marra, M.A., Jones, A., Baillie, D.L., and Rose, A.M.,Genome Res., 1999, vol. 9, pp. 348–359.

    PubMed  CAS  Google Scholar 

  6. Lipman, D.J.,Nucleic Acids Res., 1997, vol. 25, pp. 3580–3583.

    Article  PubMed  CAS  Google Scholar 

  7. Duret, L., and Bucher, P.,Curr. Opin. Struct. Biol., 1997, vol. 7, pp. 399–406.

    Article  PubMed  CAS  Google Scholar 

  8. Benson, D.A., Boguski, M.S., Lipman, D.J., Ostell, J., and Ouelette, B.F.F.,Nucleic Acids Res., 1998, vol. 26, pp. 1–7.

    Article  PubMed  CAS  Google Scholar 

  9. Breathnach, R. and Chambon, P.,Annu. Rev. Biochem., 1981, vol. 50, pp. 349–383.

    Article  PubMed  CAS  Google Scholar 

  10. Altschul, S.F., Boguski, M.S., Gish, W., and Wootton, J.C.,Nature Genetics, 1994, vol. 6, pp. 119–129.

    Article  PubMed  CAS  Google Scholar 

  11. Mushegian, A.R., Bassett, D.E., Jr., Boguski, M.S., Bork, P., and Koonin, E.V.,Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 5831–5836

    Article  PubMed  CAS  Google Scholar 

  12. Gelfand, M.S.,Res. Microbiol., 1999, vol. 150 (in press).

  13. Jurka, J., Klonowski, P., Dagman, V., and Pelton, P.,Comput. Chem., 1996, vol. 20, pp. 119–121.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novichkov, P.S., Gelfand, M.S. & Mironov, A.A. Prediction of the exon-intron structure by comparison of genomic sequences. Mol Biol 34, 200–206 (2000). https://doi.org/10.1007/BF02759640

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02759640

Key words

Navigation