Skip to main content
Log in

Role of dynamic strain ageing in low cycle fatigue

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Low cycle fatigue (LCF) at elevated temperatures is known to be influenced by time-dependent processes like creep, oxidation and metallurgical instabilities. Another time-dependent phenomenon namely, dynamic strain ageing (DSA) has been found to exert an influence on LCF behaviour at high temperatures. Research activities carried out in the present author’s laboratory with a view to understanding the effects of DSA on LCF are highlighted in this paper. Occurrence of DSA manifests during total strain-controlled fatigue tests in the form of serrated plastic flow in stress-strain hysteresis loops, increased cyclic work hardening and reduced plastic strain range. Further, DSA causes localization of plastic flow leading to enhanced planarity of slip and widely-spaced slip bands. Impingement of slip bands on grain boundaries causes increased grain boundary decohesion, leading to reduced fatigue life. The influence of prior microstructure such as second phase particles and grain size on the effects of DSA on LCF is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhanu Sankara Rao K 1989Influence of metallurgical variables on low cycle fatigue behaviour of type 304 stainless steel, Ph. D Thesis, University of Madras, Madras

    Google Scholar 

  • Bhanu Sankara Rao K, Sandhya R and Mannan S L 1993Int. J. Fatigue 15 221

    Article  Google Scholar 

  • Bhanu Sankara Rao K, Seetharaman V, Mannan S L and Rodriguez P 1986aHigh Temp. Mater. Proc. 7 63

    Google Scholar 

  • Bhanu Sankara Rao K, Valsan M, Sandhya R, Mannan S L and Rodriguez P 1986bProc. Int. Conf. Creep, JSME, Tokyo 77

  • Bhanu Sankara Rao K, Valsan M, Sandhya R, Mannan S L and Rodriguez P 1986cHigh Temp. Mater. Proc. 7 171

    Google Scholar 

  • Bhanu Sankara Rao K, Vijayalakshmi M, Valsan M, Mannan S L and Rodriguez P 1986dScr. Metall. 20 989

    Article  Google Scholar 

  • Bhanu Sankara Rao K, Vijayalakshmi M, Valsan M, Mannan S L and Rodriguez P 1989Scr. Metall. 23 157

    Article  Google Scholar 

  • Bhanu Sankara Rao K, Valsan M, Sandhya R, Mannan S L and Rodriguez P 1990Met. Mater. Proc. 2 17

    Google Scholar 

  • Bhanu Sankara Rao K, Valsan M, Sandhya R, Mannan S L and Rodriguez P 1991Trans. Indian Inst. Met. 44 255

    Google Scholar 

  • Bressers J 1985Proc. Int. Conf. on high temperature alloys: their exploitable potential (eds) J B Marriottet al (London: Elsevier Appl. Sci.) p. 385

    Google Scholar 

  • Bressers J and Verhegghee B 1981Res. Mech. Lett. 1 55

    CAS  Google Scholar 

  • Calnan E A and Clews C J B 1951Philos. Mag. 42 616

    CAS  Google Scholar 

  • Choudhary B K, Bhanu Sankara Rao K and Mannan S L 1991Mater. Sci. Eng. A148 267

    CAS  Google Scholar 

  • Clavel M, Levailant C and Pineau A 1980Proc. Conf. on creep-fatigue-environment interaction (eds) R M Pelloux and N S Stoloff (The Metall. Soc. of AIME) p. 24

  • Coffin L F 1971J. Mater. 6 388

    Google Scholar 

  • Coffin L F 1972Metall. Trans. 3 1777

    Article  CAS  Google Scholar 

  • Coffin L F 1974Proc. Inst. Mech. Engrs. 186 109

    Google Scholar 

  • Coffin L F 1977Fracture 1977. ICF-4 (ed) D M R Taplin (New York: Pergamon Press)1, p. 263

    Google Scholar 

  • Cook R H and Skelton R P 1979Int. Met. Rev. 19 199

    Google Scholar 

  • Cottrell A H 1953Philos. Mag. 44 829

    CAS  Google Scholar 

  • Cottrell A H 1959Dislocations and plastic flow in crystals (London: Oxford Univ. Press) p. 111

    Google Scholar 

  • Douglas D L, Thomas G and Rosser W R 1964Corrosion 20 15t

  • Hayes R W and Hayes W C 1984Acta Metall. 32 259

    Article  CAS  Google Scholar 

  • Hirakawa K, Tokiwasa K and Toyama K 1978J. Soc. Mater. Sci. Jpn 27 948

    CAS  Google Scholar 

  • Johnson E W and Johnson H H 1965Trans. AIME 233 1332

    Google Scholar 

  • Kanazawa K 1978Trans. Nat. Res. Inst. Met. 20 321

    CAS  Google Scholar 

  • Kanazawa K, Yamaguchi K and Nishijima S 1985Conf. on low cycle fatigue: Directions for the future, Lake George.

  • Kanazawa K and Yoshida S 1974Appl. Inst. Mech. Eng. 1 C226

  • Kubin L P and Estrin Y 1990Acta Metall. 38 697

    Article  CAS  Google Scholar 

  • Mannan S L 1981Influence of grain size on flow and fracture in AISI type 316 stainless steel, Ph.D. Thesis, Indian Institute of Science, Bangalore

    Google Scholar 

  • Mannan S L, Samuel K G and Rodriguez P 1982Proc. 6th Int. Conf. on strength of metals and alloys, ICSMA6 (Melbourne) p. 637

  • Mannan S L, Samuel K G and Rodriguez P 1983Trans. Indian Inst. Met. 36 313

    CAS  Google Scholar 

  • McCormick P G 1972Acta Metall. 20 351

    Article  CAS  Google Scholar 

  • Mediratta S R, Ramaswamy V and Rama Rao P 1986Scr. Metall. 20 555

    Article  CAS  Google Scholar 

  • Mughrabi H, Wang R, Differt K and Essman U 1983Fatigue mechanisms: Advances in quantitative measurement of physical damage, ASTM STP 811 (Philadelphia: ASTM) p. 5

    Google Scholar 

  • Mulford R A and Kocks U F 1979Acta Metall. 27 1125

    Article  CAS  Google Scholar 

  • Nilsson J O 1984Fat. Eng. Mater. Struct. 7 55

    Article  CAS  Google Scholar 

  • Pineau A 1983Fatigue at high temperatures (ed) R P Skelton (London: Applied Sci. Pub.) p. 305

    Google Scholar 

  • Rodriguez P 1984Bull. Mater. Sci. 6 653

    Article  Google Scholar 

  • Samuel K G, Mannan S L and Rodriguez P 1988Acta Metall. 36 2323

    Article  CAS  Google Scholar 

  • Sanders R E and Starke E A 1977Mater. Sci. Eng. 28 53

    Article  CAS  Google Scholar 

  • Sandhya R, Bhanu Sankara Rao K and Mannan S L 1989Trans. Indian Inst. Met. 42 (Suppl.) S217

  • Sleeswyk A W 1958Acta Metall. 6 598

    Article  Google Scholar 

  • Solomon H D and Coffin L F 1973Fatigue at elevated temperatures, ASTM STP 520, (Philadelphia: ASTM) p. 112

    Google Scholar 

  • Srinivasan V S, Sandhya R, Bhanu Sankara Rao K, Mannan S L and Raghavan K S 1991Int. J. Fatigue 13 471

    Article  CAS  Google Scholar 

  • Stroh A N 1957Adv. Phys. 6 418

    Google Scholar 

  • Valsan M, Bhanu Sankara Rao K and Mannan S L 1989Trans. Indian Inst. Met. 42 (Suppl.) S203

  • Valsan M, Sastry D H, Bhanu Sankara Rao K and Mannan S L 1993Metall. Trans. (to appear)

  • Van den Beukel A and Kocks U F 1982Acta Metall. 30 1027

    Article  Google Scholar 

  • Venkadesan S, Venugopal S, Sivaprasad P V and Rodriguez P 1992Mater. Trans. JIM 33 1040

    CAS  Google Scholar 

  • Vogt J B, Degallaix S and Foct J 1984Int. J. Fatigue 6 211

    Article  CAS  Google Scholar 

  • Yamaguchi K, Kanazawa K and Yoshida S 1977Mater. Sci. Eng. 11 439

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mannan, S.L. Role of dynamic strain ageing in low cycle fatigue. Bull. Mater. Sci. 16, 561–582 (1993). https://doi.org/10.1007/BF02757656

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02757656

Keywords

Navigation