Skip to main content
Log in

Combustion synthesis of oxide materials for nuclear waste immobilization

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Oxide materials like perovskite, zirconolite, hollandite, pyrochlore, NASICON and sphene which are used for nuclear waste immobilization have been prepared by a solution combustion process. The process involves the combustion of stoichiometric amount of corresponding metal nitrates and carbohydrazide/tetraformyl trisazine/diformyl hydrazide at 450°C. The combustion products have been characterized using powder X-ray diffraction, infrared spectroscopy, and29Si MAS-NMR. The fine particle nature of the combustion derived powders has been studied using density, particle size, BET surface area measurements and scanning electron microscopy. Sintering of combustion derived powder yields 85–95% dense ceramics in the temperature range 1000°–1300°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ainsworth C and Jones R G 1955J. Am. Chem. Soc. 77 621

    Article  CAS  Google Scholar 

  • Arul Dhas N and Patil K C 1993J. Mater. Chem. 3 1289

    Article  Google Scholar 

  • Arul Dhas N and Patil K C 1994J. Mater. Chem. 4 491

    Article  Google Scholar 

  • Chen S K and Liu H S 1994J. Mater. Sci. 29 2921

    Article  CAS  Google Scholar 

  • Clarke D R 1983Ann. Rev. Mater. Sci. 13 191

    Article  CAS  Google Scholar 

  • Hayward P J and Cecchetto E V 1984 inScientific basis for nuclear waste management (ed) Z Lutze (New York: Elsevier) Vol. 5, p. 91

    Google Scholar 

  • Hayward P J, Vance E R, Cann C D and Mitchell S L 1984 inAdvances in ceramics (ed) G G Wicks and W A Ross (Ohio: American Ceramic Society, Columbus) Vol 8, p. 291

    Google Scholar 

  • Irani R R and Callis C F 1963 inParticle size: measurement, interpretation and application (New York: John Wiley) p. 125

    Google Scholar 

  • Jain S R, Adiga K C and Pai Verneker V R 1981Combust. Flame 40 71

    Article  CAS  Google Scholar 

  • Lippmaa E, Magi M, Samoson A, Engelhardt G and Grimmer A R 1980J. Am. Chem. Soc. 102 4889

    Article  CAS  Google Scholar 

  • MacCarthy G J 1976Trans. Am. Nucl. Soc. 23 168

    Google Scholar 

  • MacCarthy G J 1979 inScientific basis for nuclear waste management (ed) MacCarthy G J (New York: Plenum) Vol. 1, p. 329

    Google Scholar 

  • MacCarthy G J and Davidson M T 1975Am. Ceram. Soc. Bull. 54 782

    Google Scholar 

  • MacCarthy G J, White W B, Rustum Roy, Scheetz B E, Komarneni S, Smith D K and Roy D M 1978Nature (London) 273 216

    Article  Google Scholar 

  • Macial G and Sindorf D 1980J. Am. Chem. Soc. 102 7606

    Article  Google Scholar 

  • Mashima M 1966Bull. Chem. Soc. Jpn. 39 504

    Article  CAS  Google Scholar 

  • Mohr E B, Brezinki J J and Audrieth L F 1953Inorg. Synth. 4 32

    Article  CAS  Google Scholar 

  • Ringwood A E, Kesson S E, Ware N G, Hibberson W and Major A 1979Nature (London) 278 219

    Article  CAS  Google Scholar 

  • Segal D 1989Chemical synthesis of advanced ceramic materials (Cambridge: Cambridge University Press)

    Google Scholar 

  • Yamamura H, Tanada M, Tanada H, Shirasaki S and Moriyoshi Y 1985Ceram. Int. 11 17

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muthuraman, M., Dhas, N.A. & Patil, K.C. Combustion synthesis of oxide materials for nuclear waste immobilization. Bull. Mater. Sci. 17, 977–987 (1994). https://doi.org/10.1007/BF02757574

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02757574

Keywords

Navigation