Skip to main content
Log in

Algebraic model of turbulent boundary layer on a convex curvilinear surface

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

A simple algebraic model of turbulent boundary layer on convex curvilinear surfaces is suggested that is based on the generalization of the two-layer one-parameter algebraic model for a flat plate [ 1 ]. The model is tested in a wide range of variation of the curvature parameter (0.01 ≤ δ0/R w ≤ 0.09, where δ0 is the thickness of the boundary layer at the initial cross section of the curvilinear region andR w is the curvature radius of the surface), the results of which are indicative of a good agreement between the experimental and calculated data on the integral characteristics of the boundary layer, namely, the friction coefficientC f , the displacement thickness δ* and momentum thickness δ**, and the form parameterH = δ***. Based on the comparison between the calculated and experimental data on the distribution of tangential turbulent stresses, a conclusion is made that the model predicts a much lower effect of the curvature on the suppression of turbulence in the outer region of boundary layers at a mild curvature of the surface (δ 0 /R w = 0.01) than in experiments. However, this difference has a tendency to decrease as the surface curvature increases. An analysis of the calculated and experimental velocity profiles plotted in the variables of the wall law leads to a conclusion that the generalized Townsend wall law is partially realized on a curvilinear surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garbaruk, A.V., Lapin, Yu.V., and Strelets, M.Kh.,Teplofiz. Vys. Temp., 1999, vol. 37, no. 1, p. 87 (High Temp. (Engl. transi.), vol. 37, no. 1, p. 82).

    Google Scholar 

  2. Prandtl, L., Einfluss stabilisierender Kräfte auf die Turbulenz, inSonderdruck Vorträge aus dem Gebiete der Aerodynamik und verwandter Gebiete, Aachen, 1929.

  3. So, R.M.C. and Mellor, G.L.,J. Fluid Mech., 1973, vol. 60, p. 43.

    Article  ADS  Google Scholar 

  4. Gillis, J.C. and Johnston, J.P.,J. Fluid Mech, 1983, vol. 135, p. 123.

    Article  ADS  Google Scholar 

  5. Gibson, M.M., Verriopoulos, C.A., and Vlachos, N.S., Turbulent Boundary Layer on a Mildly Curved Convex Surface,Exp. Fluids, 1984, vol. 2, p. 17.

    Article  Google Scholar 

  6. Muck, K.C., Hoffmann, P.H., and Bradshaw, P.,J. Fluid Mech., 1985, vol. 161, p. 347.

    Article  ADS  Google Scholar 

  7. Turbulentnost’ (Turbulence), Bradshaw, P., Ed., Moscow: Mashinostroenie, 1980 (Russ. transi.).

  8. Ginevskii, A.S., Ioselevich, V.A., Kolesnikov, A.V.,et ai, Itogi Nauki Tekh., Ser.: Mekh. Zhidk. Gaza, 1978, vol. 11.

  9. Khalatov, A.A.,Inzh. Fiz. Zh., 1996, vol. 69, no. 6, p. 927.

    Google Scholar 

  10. Ustimenko, B.P.,Protsessy turbulentnogo perenosa vo vrashchayushchikhsya techeniyakh (Processes of Turbulent Transport in Rotating Flows), Almaty: Nauka, 1977.

    Google Scholar 

  11. Bradshaw, P.,AGARDograph, 1973, no. 169.

  12. Wilcox, D.C. and Chambers, T.L.,AIAA J., 1977, vol. 15, no. 4, p. 574.

    Article  ADS  Google Scholar 

  13. Sovremennoe sostoyanie gidroaerodinamiki vyazkoi zhidkosti (Current Status of Research into Aerohydrodynamics of Viscous Liquid), Gol’dshtein, S., Ed., Moscow: Izd. Inostrannoi Literatury, 1948, vol. 1 (Russ. transi.).

  14. Lapin, Yu.V. and Pospelov, V.A.,Teplofiz. Vys. Temp., 1995, vol. 33, no. 3, p. 422 (High Temp. (Engl. transi.), vol. 33, no. 3, p. 421).

    Google Scholar 

  15. Loitsyanskii, L.G.,Izv. Nauchno-Issled. Inst. Gidrotekh., 1933, vol. 19.

  16. Townsend, A.A.,J. Fluid Mech., 1961, vol. 11, p. 97.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Huang, P.G. and Bradshaw, P.,AIAA J., 1995, vol. 33, no. 4, p. 624.

    Article  ADS  MATH  Google Scholar 

  18. Spalart, PR. and Allmaras, S.R., A One-Equation Turbulence Model for Aerodynamic Flows,AIAA Pap., 1992, no. 92-0439.

  19. Spalart, PR. and Shur, M.L.,Aerosp. Sci., Technol., 1997, vol.1, no. 5, p. 297.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labusov, A.N., Lapin, Y.V. Algebraic model of turbulent boundary layer on a convex curvilinear surface. High Temp 38, 434–443 (2000). https://doi.org/10.1007/BF02756004

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02756004

Keywords

Navigation