Skip to main content
Log in

Heat shock protein expression in hearts hypertrophied by genetic and nongenetic hypertension

  • Originals
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Summary

Genetically hypertensive animals are characterized by greater thermosensitivity and overexpression of heat shock proteins (HSP) upon thermal stimulation. We examined HSP72 expression under conditions of brief coronary occlusion or thermal stimulation, and the effects of the severity of these stimuli and of myocardial hypertrophy on the expression in hearts of spontaneously hypertensive rat (SHR) and Wistar Kyoto rat (WKY) groups, A snare was created around the left coronary artery in the SHR (n=16) and WKY (n=19) groups. In 7 WKY rats, the ascending aorta was banded and a snare was created simultaneously (WKY-AoB). By tying the snare, 4 weeks later, we applied 5- or 10-min coronary occlusion without opening the chest. For thermal stimulation, the SHR (n=13) and WKY (n=11) rats were placed in a 42°C chamber for 15 or 40 min. The mRNA or protein level was estimated 1 or 24h after stimulation. In the SHR vs WKY groups, the mRNA and protein levels were higher after 5-min occlusion or 15-min thermal stimulation. After 10-min occlusion or 40-min thermal stimulation the difference was no longer observed. The overexpression was not observed in the WKY-AoB group despite the presence of hypertrophy similar to that seen in the SHR group (3.11±0.11 vs 3.20±0.06 mg/g in left ventricular weight/body weight). The HSP72 was overexpressed in hearts of genetically hypertensive animals after brief ischemia. Differential expression between the two groups was observed after mild stimuli, but not after more severe stimuli. Cardiac hypertrophy was not a major factor for determining the overexpression of HSP72.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levy, D., Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocariographically determined left ventricular mass in the Framingham heart study. N Engl J Med 322:1561–1566.

    Article  CAS  PubMed  Google Scholar 

  2. Koyanagi S, Eastman CL, Harrison DG, Marcus ML (1982) Increased and left ventricular hypertrophy. Circ Res 50:55–62

    CAS  PubMed  Google Scholar 

  3. Donnelly TJ, Sievers RE, Vissern FLJ, Welch WJ, Wolfe CL (1992) Heat shock protein induction in rat hearts: a role for improved myocardial salvage after ischemia and reperfusion? Circulation 85:769–778

    CAS  PubMed  Google Scholar 

  4. Hutter MM, Sievers RE, Barbosa V, Wolfe CL (1994) Heat-shock protein induction in rat hearts. A direct correlation between the amount of heat-shock protein induced and the degree of myocardial protection. Circulation 89:355–360

    CAS  PubMed  Google Scholar 

  5. Suzuki K, Sawa Y, Kaneda Y., Ichikawa H, Shirakura R, Matsuda H (1997) In vivo gene transfection with heat shock protein 70 enhances myocardial tolerance to ischemia-reperfusion injury in rat. J Clin Invest 99:1645–1650

    CAS  PubMed  Google Scholar 

  6. Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH (1995) Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 95:1446–1456

    CAS  PubMed  Google Scholar 

  7. Radford NB, Fina M, Benjamin IJ, Moreadith RW, Graves KH, Zhao P, Gavva S, Wiethoff A, Sherry AD, Malloy CR, Williams RS (1996) Cardioprotective effects of 70-kDa heat shock protein in transgenic mice. Proc Natl Acad Sci USA 93:2339–2342.

    Article  CAS  PubMed  Google Scholar 

  8. Nakano M, Mann DL, Knowlton AA (1997) Blocking the endogeneous increase in HSP 72 increases susceptibility to hypoxia and reoxygenation in isolated adult feline cardiocytes. Circulation 95:1523–1531

    CAS  PubMed  Google Scholar 

  9. Yellon DM, Latchman DS (1992) Stress proteins and myocardial protecion. J Mol Cell Cardiol 24:113–124

    Article  CAS  PubMed  Google Scholar 

  10. Bongrazio M, Comini L, Gaia G, Bachetti T, Ferrari R (1994) Hypertension, aging, and myocardial synthesis of heat-shock protein 72. Hypertension 24:620–624

    CAS  PubMed  Google Scholar 

  11. Tajima M, Isoyama S, Nitta Y, Abe K (1997) Attenuation of heat shock protein expression by coronary occlusion in hypertrophied hearts. Am J Physiol 273:H526-H533

    CAS  PubMed  Google Scholar 

  12. Schunkert H, Jahn L, Izumo S, Apstein CS, Lorell BH (1991) Localization and regulation of c-fos and c-jun protooncogene induction by systolic wall stress in normal and hypertrophied rat hearts. Proc Natl Acad Sci USA 88:11480–11484

    Article  CAS  PubMed  Google Scholar 

  13. Yoshida K, Yasujima M, Kohzuki M, Kanazawa M, Yoshinaga K, Abe K (1992) Endothelin-1 augments pressor response to angiotensin II infusion in rats. Hypertension 20:292–297

    CAS  PubMed  Google Scholar 

  14. Ikeda K, Nara Y, Yamori Y (1991) Indirect systolic and mean blood pressure determination by a tail cuff method in spontaneously hypertensive rats. Lab Animals 25:26–29

    Article  CAS  Google Scholar 

  15. Nitta Y, Abe K, Aoki M, Ohno I, Isoyama S (1994) Diminished heat shock protein 70mRNA induction in aged rat hearts after ischemia. Am J Physiol 267:H1795-H1803

    CAS  PubMed  Google Scholar 

  16. Isoyama S, Ito N, Kuroha M, Takishima T (1989) Complete reversibility of physiological coronary vascular abnormalities in hypertrophied hearts produced by pressure overload in the rat. J Clin Invest 84:288–294

    Article  CAS  PubMed  Google Scholar 

  17. Sato S, Abe K, Kawagoe J, Aoki M, Kogure K (1992) Isolation of complementary DNAs for heat shock protein (HSP) 70 and heat shock cognate protein (HSC) 70 genes and the expressions in post-ischaemic gerbil brain. Neurol Res 14:375–380

    CAS  PubMed  Google Scholar 

  18. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254.

    Article  CAS  PubMed  Google Scholar 

  19. Isoyama S, Sato F, Takishima T (1991) Effect of age on coronary circulation after imposition of pressure-overload in rats. Hypertension 17:369–377

    CAS  PubMed  Google Scholar 

  20. Hamet P, Malo D, Tremblay J (1990) Increased transcription of a major stress gene in spontaneously hypertensive mice. Hypertension 15:904–908

    CAS  PubMed  Google Scholar 

  21. Malo D, Schlager G, Tremlay J, Hamet P (1989) Thermosensitivity, a possible new locus involved in genetic hypertension. Hypertension 14:121–128

    CAS  PubMed  Google Scholar 

  22. Hashimoto T, Mosser RD, Tremblay J, Hamet P (1991) Increased accumulation of hsp70 messenger RNA due to enhanced activation of heat-shock transcription factor in spontaneously hypertensive rats. J Hypertens 9 [Suppl 6]: S170-S171

    CAS  Google Scholar 

  23. Lukashev ME, Klimanskaya IV, Postnov YV (1991) Synthesis of heat-shock proteins in cultured fibroblasts from normotensive and spontaneously hypertensive rat embryos. J Hypertens 9 [Suppl 6]:S182-S183

    CAS  Google Scholar 

  24. Schunkert H, Weinberg EO, Bruckschlegel G, Riegger AJG, Lorell BH (1995) Alteration of growth responses in established cardiac pressure overload hypertrophy in rats with aortic banding. J Clin Invest 96:2768–2774

    CAS  PubMed  Google Scholar 

  25. Hamet P, Kaiser MA, Sun YL, Page V, Vincent M, Kren V, Pravenec M, Kunes J, Tremblay J, Samani NJ (1996) HSP27 locus cosegregates with left ventricular mass independently of blood, pressure. Hypertension 28:1112–1117

    CAS  PubMed  Google Scholar 

  26. Harris EL, Phelan EL, Thompson CM, Millar JA, Grigor MR (1995) Heart mass and blood pressure have separate genetic determinants in the New Zealand genetically hypertensive (GH) rat. J Hypertens 13:397–404

    Article  CAS  PubMed  Google Scholar 

  27. Pravenec M, Gauguiter D, Schott JJ, Buard J, Kren V, Bila V, Sztirer C, Sztirer J, Wang JM, Huang H, St-Lezin E, Spence MA, Flodman P, Printz M, Lathrop GM, Vergnaud G, Kurtz TW (1995) Mapping of quantitative trait loci for blood pressure and cardiac mass in the rat by genome scanning of recombinant inbred, strains. J Clin Invest 96:1973–1978

    CAS  PubMed  Google Scholar 

  28. Wurst W, Benesch C, Drabent B, Rothermel E, Benecke BB, Gunther E (1989) Localization of heat shock protein 70 genes inside the rat major histocompatibility complex close to class III genes. Immunogenetics 30:46–49

    Article  CAS  PubMed  Google Scholar 

  29. Hamet P, Malo D, Hashimoto T, Tremblay J (1990) Heat stress genes in hypertension. J Hypertens 8 [Suppl 7]:S47-S52

    CAS  Google Scholar 

  30. Malo D, Pang SC, Schlager G, Tremblay J, Hamet P (1990) Deorease of blood pressure in spontaneously hypertensive mice by heat treatment. Am J Hypertens 3:400–404

    CAS  PubMed  Google Scholar 

  31. Marcus ML, Harrison DG, Chilian WM, Koyanagi S, Inou T, Tomanek RJ, Martins JB, Eastham CL, Hiratzka LF (1987) Alterations in the coronary circulation in hypertrophied ventricles. Circulation 75 [Suppl I]:I-19–I-25

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwabuchi, K., Tajima, M. & Isoyama, S. Heat shock protein expression in hearts hypertrophied by genetic and nongenetic hypertension. Heart Vessels 13, 30–39 (1998). https://doi.org/10.1007/BF02750641

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02750641

Key words

Navigation