Skip to main content
Log in

Analysis of the local robustness of stability for flows

  • Published:
Mathematics of Control, Signals and Systems Aims and scope Submit manuscript

Abstract

In this paper the problem of measuring the robustness of stability for a perturbed continuous-time nonlinear system at a singular fixed point is studied. Various stability radii are introduced and their values for the nonlinear system and its linearization are compared. It is shown that they generically coincide. This result may also be used to show generic continuity of linear real stability radii. Some examples are presented showing that it is sometimes necessary to consider the nonlinear system directly, and not simply to rely on the information provided by the linearization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. D. O. Anderson, N. K. Bose, and E. I. Jury. Output feedback stabilization and related problems—solution via decision methods.IEEE Trans. Automat. Control,20 (1975), 53–66.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. R. Barmish, P. P. Khargonekar, Z. C. Shi, and R. Tempo. Robustness margin need not be a continuous function of the problem data.Systems Control Lett.,15 (1990), 91–98.

    Article  MATH  MathSciNet  Google Scholar 

  3. B. Bertilsson and V. Blondel. Transcendence in simultaneous stabilization.J. Math. Systems. Est. Control,6 (1996), 1–22.

    MathSciNet  Google Scholar 

  4. J. Bochnak, M. Coste, and M.-F. Roy,Géométrie algébrique réelle. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge Band 12. Springer-Verlag, Berlin, 1987.

    MATH  Google Scholar 

  5. J. Carr.Applications of Center Manifold Theory. Applied Mathematical Sciences, Volume 35. Springer-Verlag, Berlin, 1981.

    Google Scholar 

  6. E. A. Coddington and N. Levinson.Theory of Ordinary Differential Equations. McGraw-Hill, New York, 1955.

    MATH  Google Scholar 

  7. F. Colonius and W. Kliemann. A stability radius for nonlinear differential equations subject to time varying perturbations. InProc. 3rd IFAC Symposium on Nonlinear Control Systems Design (NOLCOS’95), Lake Tahoe, June 1995, pp. 44–46.

  8. J. Dieudonné.Treatise of Modern Analysis, Volume 3. Academic Press, New York, 1972.

    Google Scholar 

  9. D. Hinrichsen and A. J. Pritchard. Real and complex stability radii: a survey. In D. Hinrichsen and B. Mårtensson (eds.),Control of Uncertain Systems. Progress in Systems and Control Theory, Number 6, Birkhäuser, Basel, 1990, pp. 119–162.

    Google Scholar 

  10. D. Hinrichsen and A. J. Pritchard. A note on some differences between real and complex stability radii.Systems Control Lett.,14 (1990), 401–409.

    Article  MATH  MathSciNet  Google Scholar 

  11. D. Hinrichsen and A. J. Pritchard. Robustness measures for linear systems with applications to stability radii of Hurwitz and Schur polynomials.Internat. J. Control,55 (1992), 809–844.

    Article  MATH  MathSciNet  Google Scholar 

  12. D. Hinrichsen and A. J. Pritchard: Robust stabilization of systems with uncertain state and input matrices. Technical report 333, Institute for Dynamical Systems, Universität Bremen, 1995.

  13. V. S. Kozyakin. Algebraic unsolvability of problem of absolute stability of desynchronized systems.Automat. Remote Control. 51 (1990), 754–759.

    MATH  MathSciNet  Google Scholar 

  14. A. Packard and J. C. Doyle. The complex structured singular value.Automatica,29 (1993), 71–109.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. D. B. Paice and F. R. Wirth. Analysis of the local robustness of stability for maps.Proc. European Control Conference (ECC 97), Brussels, July 1997, paper no. 334, session TU-E-B-4.

  16. A. D. B. Paice and F. R. Wirth. Robust stability of nonliear systems subject to time-varying perturbations.Proc. Conference on Decision and Control (CDC 97), San Diego, December 1997, pp. 4436–4441.

  17. G. K. Pedersen.Analysis Now. Graduate Texts in Mathematics, Number 118, Springer-Verlag, New York, 1989.

    MATH  Google Scholar 

  18. L. Qiu, B. Bernhardsson, A. Rantzer, E. J. Davison, P. M. Young, and J. C. Doyle. A formula for computation of the real stability radius.Automatica 31 (1995), 879–890.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Vidyasagar.Nonlinear Systems Analysis, 2nd edition. Prentice-Hall, Englewood Cliffs, NJ, 1993.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. B. Paice.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paice, A.D.B., Wirth, F.R. Analysis of the local robustness of stability for flows. Math. Control Signal Systems 11, 289–302 (1998). https://doi.org/10.1007/BF02750394

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02750394

Key words

Navigation