Skip to main content
Log in

πp phenomenology, (300÷1300) MeV

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

Elastic scattering experiments from 300 to 1300 MeV are analysed by various new or improved techniques. The usual D13 andF 15 assignments for the second and third resonances are supported. The fourth resonance is found to be F37, and the 800 MeV π+p shoulder to be D35 inelastic. There are also indications of four more inelastic shoulders: in P11∼400 MeV), S11∼ 600 MeV), D15∼ 700 MeV) and G17∼ 1200 MeV). BothS waves increase steadily with energy, indicating a strong repulsive core. The background at the fourth resonance is strongly spindependent, in contradiction to the usual diffraction model. The imaginary parts of the partial amplitudes are obtained quantitatively over much of this region. The most powerful new condition is the requirement that the elasticities of the resonances, as determined from total cross-sections and forward dispersion relations, be compatible with the differential cross-sections there.

Riassunto

Con varie tecniche nuove o migliorate si analizzano gli esperimenti di scattering elastico fra 300 e {dy1300} MeV. Si convalidano le usuali assegnazioni D13 e F15 alla seconda e terza risonanza. Si trova che la quarta risonanza è F37, e che il ginocchio π+p di 800 MeV è D35 anelastico. Si hanno anche indicazioni di altri quattro ginocchi anelastici: in P11u∼ 400 MeV), Su∼600 MeV), D15∼ 700 MeV) e G17∼ {dy1200} MeV). Entrambe le ondeS crescono fortemente con l’energia, indicando un core fortemente ripulsivo. Il fondo della quarta risonanza dipende fortemente dallo spin, in contraddizione coll’usuale modello di diffrazione. Si ottengono quantitativamente le parti immaginarie delle ampiezze parziali entro la maggior parte di questa regione. La più potente condizione nuova è l’esigenza che le elasticità delle risonanze, determinate dalle sezioni d’urto totali e dalle relazioni di dispersione in avanti, siano compatibili ivi con le sezioni d’urto differenziali.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Donnachie andJ. Hamilton:Semiphenomenological solutions of partial-wave dispersion relations, inPhys. Rev.,133, B 1053 (1964);T. D. Spearman:Phys. Rev.,129, 1847 (1963);J. Hamilton, P. Menotti, G. C. Oades andL. L. J. Vick:Phys. Rev.,128, 1881 (1962); and numerous earlier papers cited there.

    Article  ADS  Google Scholar 

  2. This result is due toS. Bergia.

  3. A. Donnachie, J. Hamilton andA. T. Lea:Prediction of P, D and F wave πN scattering University College, London preprint.

  4. C. D. Wood: Berkeley Thesis, UCRL-9507 (1961).

  5. W. M. Layson:Nuovo Cimento,27, 724 (1963).

    Article  Google Scholar 

  6. J. A. Helland, T. J. Devlin, D. E. Hagge, M. J. Longo, B. J. Moyer andC. D. Wood:Phys. Rev. Lett.,10, 27 (1963).

    Article  ADS  Google Scholar 

  7. J. Todd|: A Survey of Numerical Analysis (New York, 1962), p. 360.

  8. We used the dispersion integrals calculated byG. Höhler andG. Ebel (The Complex Diagram of the Pion-Nucleon Forward Scattering Amplitude, Karlsruhe preprint (1963)), on the basis of Berkeley total cross-section data. We combined them with the low-energy parameters (coupling constant and S-wave scattering lengths) ofJ. Hamilton andW. S. Woolcock:Rev. Mod. Phys.,35, 737 (1963). We took the errors on these low energy parameters into account. They have quite a big effect. Comparison with the evaluation of Klepikovet al.: (Dubna preprint, 1960), indicates that the errors on the dispersion integrals are usually relatively negligible. The errors on the optical theorem points were, of course, included.

    Article  ADS  Google Scholar 

  9. P. Auvil andC. Lovelace:A Discussion of πpElastic Scattering Experiments, (200÷1600) MeV (in preparation).

  10. S. Kellman, W. P. Kovacik andT. A. Romanowski:Phys. Rev.,129, 365 (1963).

    Article  ADS  Google Scholar 

  11. It should be remembered, when looking at Fig. 1–12 that normalization to the unitarity limit tends to turn « bumps » into « steps ».

  12. R. F. Peieels:Phys. Rev.,118, 325 (1960).

    Article  ADS  Google Scholar 

  13. O. T. Vik andH. K. Rugge:Phys. Rev.,129, 2311 (1903).

    Article  Google Scholar 

  14. M. Olsson andG. B. Yodh:Phys. Rev. Lett.,10, 353 (1963).

    Article  ADS  Google Scholar 

  15. L. K. Goodwin, K. W. Kenney andV. Perez-Mendez:Phys. Rev.,122, 655 (1961).

    Article  ADS  Google Scholar 

  16. P. Grard, G. Macleod, L. Montanet, M. Ceesti, R. Barloutaud, C. Choquet, J. M. Gillard, J. Heughebaert, A. Levèque, P. Lehmann, J. Meyer andD. Revell:Nuovo Cimento,22, 193 (1961).

    Article  Google Scholar 

  17. C. D. Wood, T. J. Devlin, J. A. Helland, M. J. Longo, B. J. Moyer andV. Perez-Mendez:Phys. Rev. Lett.,6, 481 (1961).

    Article  ADS  Google Scholar 

  18. C. N. Vittitoe, B. R. Riley, W. J. Fickinger, V. P. Kenney, J. G. Mowat andW. D. Shephard: Kentucky preprint (1963).

  19. S. Bergia, L. Bertocchi, V. Borelli, G. Brautti, L. Chersovani, L. Lavatelli, A. Minguzzi-Ranzi, K. Tosi, P. Waloschek andV. Zoboli:Nuovo Cimento,15, 551 (1959).

    Article  Google Scholar 

  20. L. Bertanza, E. Carrara, A. Drago, P. Franzini, I. Mannelli, G. V. Silvestrini andP. H. Stoker:Nuovo Cimento,19, 467 (1961).

    Article  Google Scholar 

  21. This has certainly occurred to many people, but we cannot find any reference in print.

  22. G. Höhler, G. Ebel andJ. Zwingenberger:Proc. Aix-en-Provence Conference,1, 485 (1961).

    Google Scholar 

  23. G. Höhler andG. Ebel:Nucl. Phys.,48, 470 (1963).

    Article  Google Scholar 

  24. E. K. Adair:Phys. Rev.,113, 338 (1959).

    Article  ADS  Google Scholar 

  25. J. S. Ball andW. K. Frazer:Phys. Rev. Lett.,7, 204 (1961).

    Article  ADS  Google Scholar 

  26. P. Bareyre, C. Bricman, G. Valladas, G. Villet, J. Bbizard andJ. Seguinot :Pion-Nucleon Interactions Between 300and 700 MeV, inPhys. Lett., (to be published).

  27. B. T. Feld andD. L. Roper:Proc. Sienna Conference, vol.1 (1964), p. 400.

    Google Scholar 

  28. See, for example, Fig. 1 of ref. (26). However, it should be noted that there are very little published data on the π+p inelastic processes at low energies and what there is, is mostly not very accurate.

  29. E. Pauli, A. Muller, R. Barloutaud, L. Cardin, J. Meyer, M. Beneventano, G. Gialanella, L. Paoluzi andR. Finzi:Proc. Sienna Conference, vol.1 (1963), p. 92.

    Google Scholar 

  30. J. Hamilton andW. S. Woolcock:Rev. Mod. Phys.,35, 737 (1963).

    Article  ADS  Google Scholar 

  31. J. Detoeuf, Y. Ducros, J. Merlo, A. Stirling, B. Thevenet, L. van Rossum, andJ. Zsembery:Proe. Internat. Conf. on High Energy Physics (CERN, 1962), p. 7.

  32. E. F. Beall, B. Cork, P. G. Murphy, W. A. Wenzel, C. M. P. Johnson andL. J. Coester:Phys. Rev.,126, 1554 (1962).

    Article  ADS  Google Scholar 

  33. P. Ogden, J. Helland, D. Hagge, M. Banner, J. F. Detoeuf andJ. Teiger: private communication throughG. Valladas.

  34. See, for example,P. Cziffra andM. J. Moravcsik:A Practical Guide to the Method of Least Squares, UCRL-8523 (1958).

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research reported in this document has been sponsored in part by the Air Force Office of Scientific Research OAR through the European Office Aerospace Research United States Air Force.

National Science Foundation post-doctoral fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auvil, P., Lovelace, C. πp phenomenology, (300÷1300) MeV. Nuovo Cim 33, 473–519 (1964). https://doi.org/10.1007/BF02750207

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02750207

Navigation