Skip to main content
Log in

Schrödinger equation for many distinguishable particles as a consequence of a microscopic, stochastic, steady-state motion

Уравнение Шредингер а для большого числа р азличных частиц, как следствие микроскопического, с тохастического, стац ионарного движения

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

The Schrödinger equation forN distinguishable particles is derived from classical mechanics with the additional assumption that the charged particles are subject to a flickering motion independent of external forces and, therefore, constant in time. We neglect the radiative corrections due, in classical terms, to the background, stochastic electromagnetic fleld generated by all the other particles of the Universe and constituting what is called ≪ zero-point fleld ≫ of quantum electrodynamics.

Riassunto

L’equazione di Schrödinger perN particelle distinguibili è derivata dalla fisica classica con l’ulteriore postulato che le particelle cariche siano soggette ad un moto stocastico indipendente dalle forze esterne e quindi costante nel tempo. Si trascurano le correzioni radiative dovute, in termini classici, al campo elettromagnetico di fondo generato da tutte le altre particelle dell’Universo e costituente ciò che è chiamato il ≪ campo di punto zero ≫ dell’elettrodunamica quantistica.

Резюме

Выводится уравнение Шредингера для N различных частиц, исх одя из классической меха ники и предположения, что заряженные частицы и спытывают мерцающее движение, н е зависящее от внешни х сил, и, следовательно, посто янное во времени. Мы пренебр егаем радиационными поправками в классических члена х, которые обусловлены фоном, стохастически м электромагнитным по лем, образованным всеми остальными час тицами вселенной, и составляющими то, что называется « нулевым полем » кван товой электродинами ки.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Nelson:Phys. Rev.,150, 1079 (1966).

    Article  ADS  Google Scholar 

  2. SeeG. Cavalleri:Phys. Rev. D,23, 363 (1981), where also a criticism of stochastic mechanics and of the paper of ref. (2) is given. An extension of eq. (1) to a free charge has been obtained byA. Rueda:Phys. Rev. A,23, 2020 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  3. For a review of the results of SED seeM. Surdin:Ann. Inst. Henry Poincaré,15, 203 (1971). See alsoT. H. Boyer:Phys. Rev. B,11, 790, 809 (1975).

    ADS  Google Scholar 

  4. For the most recent achievements seeT. H. Boyer:Phys. Rev.,18, 1238 (1978);P. Claverie andS. Diner:Inst. J. Quantum Chem.,2, Suppl. 1,41 (1977).

    Article  ADS  Google Scholar 

  5. P. Claverie andS. Diner:Int. J. Quantum Chem.,42, Suppl. 1, 41 (1977);P. Claverie:Proceedings of Einstein Centennial Symposium on Fundamental Physios, Bogota, 1979, edited byS. M. Moore, A.M. Rodriguez-Vargas, A. Rueda andG. Violini (Universidad de los Andes, Bogotà, 1979); inBynamical Systems and Microphysics, edited byA. Blaquiere, F. Fer andA. Marzollo, CISMCourses and Lectures No. 261 (Springer-Verlag, Berlin, 1980), p. 11;P. Claverie, L. Pesquera andF. Soto:Phys. Lett. A,80, 113 (1980);T. W. Marshall andP. Claverie:J. Math, Phys.,21, 1819 (1980).

    Google Scholar 

  6. G. Cavalleri:Lett. Nuovo Cimento,43, 285 (1985).

    Article  MathSciNet  Google Scholar 

  7. D. Hestenes:J. Math, Phys. (N. Y.),16, 568 (1975) ;Am. J. Phys.,47, 399 (1979), and references therein. The works of Hestenes are very important for showing in the pure environment of QM that the ground-state kinetic energy is completely determined by the electron spin even in the Schrödinger equation. The latter represents an electron in an eigenstate of spin which, in our model, corresponds to an isotropic distribution of spin axes (unpolarized spin).

    Article  Google Scholar 

  8. G. Cavalleri andG. Spinelli:Nuovo Cimento B,39, 93 (1977);G. Cavalleri:Nuovo Cimento B,55, 392 (1980).

    Article  ADS  Google Scholar 

  9. A. Rueda andG. Cavalleri:Nuovo Cimento C,6, 239 (1983).

    Article  ADS  Google Scholar 

  10. I. Pitowsky:Phys. Rev. Lett.,48, 1299 (1982);Phys. Rev. D,27, 2316 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  11. A. O. Barut andA. J. Bracken:Phys. Rev. B,23, 2454 (1981), and byA. O. Barut andN. Zanghi:Phys. Rev. Lett,52, 2009 (1984).N. Cufaro Petroni andJ. P. Vigier:Int. J. Theor. Phys.,18, 807 (1979)

    MathSciNet  ADS  Google Scholar 

  12. M. Lax:Rev. Mod. Phys.,38, 359, 541 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  13. R.L. Seliger andG. B. Whitman:Proc. R. Soc. London, Ser. A,305, 1 (1968); E.A. Spiegel:Physica (Utrecht) D,1, 236 (1980).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalleri, G., Spavieri, G. Schrödinger equation for many distinguishable particles as a consequence of a microscopic, stochastic, steady-state motion. Nuov Cim B 95, 194–204 (1986). https://doi.org/10.1007/BF02749010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02749010

PACS

Navigation