Skip to main content
Log in

Differential cross-sections for photoproduction of positive pions in hydrogen

I. — low energies

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

The cross-sections σ(Eγ,ϑ ) for the reaction pγ→ n+ have been measured near threshold as a function of photon energy and at four angles. See Table I. These results combined with previously known data, have given a fairly complete and accurate description of σ(Eγ,θ) between the limits 30°≤θ≤180° and 170≤ Eγ 270 MeV. See Table II and Pig. 2. Writing σ(Eγ,θ) = W·a0 + a1 cos θ + a2 cos2 θ× withW= ηωl +(μ/Ei)ξ −1·l + (μ/E f )ω×−1 (see formula (5)) the experimental data indicate that (Table III) a0 is constant up to about Eγ 260 MeV; and that (Table V) the three ai coefficients analyzed in terms ofS andP waves give a very small spin flippingP-amplitudeK. The presumption that theS amplitudeE 1 ismainly due to the gauge invariance requirement is definitely not consistent with the data (see Table IV). A discussion based on the Kroll and Rudermann theorem leads to the conclusion that this inconsistency may be eliminated if allowance is made for the contribution of fairly large nucleon recoils. However, it turns out that only the changing sign part of these recoils is really large and apparently so up to terms of order higher than μM. The amount of the recoil at threshold is estimated and consequently a value for the pspv interaction constant is derived.

Riassunto

La sezione d’urto σ(Eγ,θ) per la reazione p → n+ è stata misurata in prossimità della soglia in funzione dell’energia fotonica e sotto quattro angoli. Vedi Tab. I. I risultati ottenuti combinati con dati precedentemente noti lianno fornito una descrizione abbastanza completa ed esatta di σ(Eγ,θ ) tra i limiti 30° ≤θ ≤180° e 170≤ ≤Eγ≤270MeV. Vedi Tab. II e Fig. 2. Scrivendo σ(E γ,θ) = W·a0+a1 cos θ+a2 cos2 θ× conW= nω·1+(μ/Ei-1 ·1+(μ/Efω×-1 (vedi formula (5)), i dati sperimentali indicano che (Tab. III) a0 è costante fino a circa Eγ 260 MeV, e che (Tab. V) i tre coefficienti ai analizzati in termini di ondeS e P danno una piccolissima ampiezza P di spin-flipping,K. La presunzione che l’ampiezzaSE, siaprincipalmente dovuta all’imposizione dell’invarianza di gauge non si accorda in alcun modo coi dati (vedi Tab. IV). Una discussione basata sul teorema di Kroll e Rudermann porta alla conclusione che questa incongruenza puó essere eliminata se si tien conto del contributo di rinculi nucleonici abbastanza energici. Tuttavia, risulta che solo la parte di tali rinculi che cambia di segno è realmente energetica ed apparentemente tale fino a termini di ordine superiore a μ/M. Si valuta la quantità di rinculo alla soglia e se ne deriva un valore per la costante di interazione pspv.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. T. Feld:Fhys. Rev.,89, 330 (1953);K. Aizu:Proceeding of the International Conference of Theor. Phys., Kyoto and Tokyo, 1953, p. 200;E. Fermi: 1954 Varenna Lecture,Suppl. Nuovo Cimento,2, 17 (1955);K. Watson:Phys. Rev.,95, 228 (1954); see alsoK. A. Brueckner andK. M. Watson:Phys. Rev.,86, 923 (1952);S. Hayakawa, M. Kawaguchi andS. Minami:Prog. Theor. Phys.,12, 355 (1954);12, 789 (1954).

    Article  ADS  Google Scholar 

  2. M. Gell-Mann andK. M. Watson:Annual Review of Nuclear Science,4, 219 (1954).

    Article  ADS  Google Scholar 

  3. G. F. Chew:Phys. Rev.,95, 669 (1954);G. F. Chew andF. E. Low:Phys. Rev.,101 1570, 1579 (1956). nication.

    MathSciNet  ADS  Google Scholar 

  4. G. Wick:Rev. Mod. Phys.,27, 339 (1955).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. N. Kroll andM. Ruderman:Phys. Rev.,93, 233 (1954).

    Article  ADS  MATH  Google Scholar 

  6. G. P. Chew, ref. (4); Fermi’s Varenna lectures 1954,Suppl. Nuovo Cimento,2, 17 (1955);K. M. Watson, ref. (1) andProceeding of the V Annual Rochester Conference, p.32, 1955.

  7. R. G. Sachs:Phys. Rev.,95, 065 (1954);W. G. Holladay andR. G. Sachs:Phys. Rev.,96, 810 (1954) and preprints.

    Article  ADS  Google Scholar 

  8. J. Steinberger andA. S. Bishop:Phys. Rev.,86, 171 (1952).

    Article  ADS  Google Scholar 

  9. R. S. White, M. J. Jacobson andA. G. Schulz:Phys. Rev.,88, 836 (1952).

    Article  ADS  Google Scholar 

  10. N. Jarmie, G. V. Repp andR. S. White:Phys. Rev.,91, 1023 (1953).

    Article  ADS  Google Scholar 

  11. R. L. Walker, J. G. Teasdale, V. Z. Peterson andJ. I. Vette:Phys. Rev.,99, 210 (1955).

    Article  ADS  Google Scholar 

  12. A. V. Tollestrup, J. C. Keck andR. M. Worlock:Phys. Rev.,99, 220 (1955).

    Article  ADS  Google Scholar 

  13. T. L. Jenkins, D. Lockey, T. R. Palfrey andR. R. Wilson:Phys. Rev.,95, 179 (1954).

    Article  ADS  Google Scholar 

  14. B. T. Feld, D. H. Frisch, I. L. Lebow, L. S. Osborne andJ. S. Clark:Phys. Rev.,85, 680 (1952).

    Article  ADS  Google Scholar 

  15. G. S. Janes andW. L. Kraushaar:Phys. Rev.,93, 900 (1954).

    Article  ADS  Google Scholar 

  16. G. Bernardini, E. L. Goldwasser:Phys. Rev.,94, 729 (1954).

    Article  ADS  Google Scholar 

  17. J. E. Leiss, C. S. Robinson andS. Penner:Phys. Rev.,98, 201 (1955).

    Article  ADS  Google Scholar 

  18. J. E. Leiss andC. S. Robinson:Phys. Rev.,95, 638 (A) (1954).

    Google Scholar 

  19. G. Bernardini andE. L. Goldwasser:Phys. Rev.,95, 857 (1954).

    Article  ADS  Google Scholar 

  20. E. A. Whalin Jr. andR. A. Reitz:Rev. Sci. Instr.,26, 59 (1955).

    Article  ADS  Google Scholar 

  21. P. D. Edwards, D. W. Kerst:Rev. Sci. Instr.,24, 490 (1953).

    Article  ADS  Google Scholar 

  22. J. Leiss, T. Yamagata andA. O. Hanson:Illinois Reports, 1954.

  23. L. I. Schiff:Phys. Rev.,83, 252 (1951).

    Article  ADS  Google Scholar 

  24. D. H. Stork:Phys. Rev.,93, 868 (1954).

    Article  ADS  Google Scholar 

  25. Proceedings of the V Annual Conference, Rochester, 1955.

  26. R. Hofstadter:Proceedings of the V Annual Rochester Conference, 1955.

  27. E. Fermi, unpublished: Dr.A. H. Rosenfeld kindly sent the authors a photostatic copy of the C-18 notes made by Fermi in preparation for the Summer Schools of Les Houches and Varenna, 1954.

  28. L. Ferretti, E. Manaresi, G. Puppi, A. Ranzi andG. Quareni:Nuovo Cimento,1, 1239 (1955);M. O. Stern et al.: Bull. Am. Phys. Soc.,Z6, SeriesII, vol.1, Jan., 1956.

    Google Scholar 

  29. K. M. Watson, J. C. Keck, A. V. Tollestrup andR. L. Walker:Phys. Rev.,101, 1159 (1956).

    Article  ADS  Google Scholar 

  30. M. Sands, J. G. Teasdale andR. L. Walker:Phys. Rev.,95, 592 (1954);M. Beneventano, G. Bernardini, D. Carlson-Lee, E. L. Goldwasser, G. Stoppini:Nuovo Cimento,12, 156 (1954);D. Carlson-Lee, G. Stoppini andL. Tau:Nuovo Cimente,2, 162 (1955);M. Beneventano, G. Bernardini, D. Carlson-Lee, G. Stoppini andL. Tau:Proceeding of International Conference, Pisa, 1955, and forthcoming paper inNuovo Cimento.

    Article  ADS  Google Scholar 

  31. K. Watson:Phys. Rev.,85, 852 (1952).

    Article  ADS  MATH  Google Scholar 

  32. A. Klein:Phys. Rev.,99, 998 (1955).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. H. P. Noyes:Phys. Rev.,101, 320 (1956).

    Article  ADS  Google Scholar 

  34. H. L. Anderson andE. Fermi:Phys. Rev.,86, 794 (1952).

    Article  ADS  Google Scholar 

  35. L. Lederman:Phys. Rev., andProceedings VI Annual Rochester Conference, April 1956.

  36. Cassel andPanofsky:Proceedings of VI Annual Rochester Conference, 1956. It is likely that the total error is less than 20%.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beneventano, M., Bernardini, G., Carlson-Lee, D. et al. Differential cross-sections for photoproduction of positive pions in hydrogen. Nuovo Cim 4, 323–356 (1956). https://doi.org/10.1007/BF02745453

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02745453

Navigation