Skip to main content

Advertisement

Log in

Assessing wetland changes in the venice lagoon by means of satellite remote sensing data

  • Published:
Journal of Coastal Conservation Aims and scope Submit manuscript

Abstract

Not only does lagoon ecology represent a transitional zone between the sea and the continent but it also expresses the equilibrium belt between erosion and sedimentation processes. Within the framework of a coastal management scheme, a precise and timely mapping of morphological changes in this environment is important. This paper illustrates the possible contribution of multi-temporal satellite observations in the monitoring of the erosion/sedimentation processes of coastal zones, where landscape features are subjected to highly morphodynamical modifications. In particular, an improved mapping accuracy was obtained by the successive application of the Maximum Likelihood (MLH) classifier and the Linear Mixture Model (LMM) techniques to the satellite image classification procedure. In fact, by estimating the amount of shallow water and wetland within each satellite pixel, the LMM technique allows for an accurate mapping of the transitional zones in the lagoon environment, thus permitting an optimal separation between land and water. The study concerns the Venice lagoon (Italy) which has been sinking slowly since the beginning of this century. This has led to widespread loss of wetlands. In order to monitor the development of the land cover, four Landsat Thematic Mapper scenes were examined, during the period 1984 to 1993. The results obtained proved that the digital analysis method of multitemporal satellite imagery, applied over a selected test area, enables the evolution of an estuarine environment landscape, with its different sequences of erosion and periods of accretion, to be monitored. The significant influence of tidal stages is discussed in the data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anon. 1987.From pattern to process: the strategy of the Earth Observing System. EOS Science Steering Committee Report, Vol II. NASA, Washington DC pp. 140.

  • Anon. 1989. REA-Riequilibrio e Ambiente.Progetto preliminare di massima delle opere alle bocche, Vol. I–II, parts 1–2. Consorzio Venezia Nuova, Ministero per i Lavori Pubblici, Magistrato alle Acque di Venezia.

  • Anon. 1992.Progetto generale di massima degli interventi morfologici in laguna. Consorzio Venezia Nuova, Ministero per i Lavori Pubblici, Magistrato alle Acque di Venezia.

  • Adami, A., Caielli, A., Cecconi, G. & Cianfruglia, A. 1992. Rilievi batimetrici svolti recentemente nella laguna di Venezia.Proc. 23° Idraulica e Costruzioni Idrauliche, Firenze, pp. D63–D74.

  • Adams, J.B., Smith, M.O. & Johnson, P.E. 1986. Spectral mixture modeling: a new analysis of rock and soil types at the Viking Lander 1 site.J. Geophys. Res. 91/B8: 8098–8112.

    Article  Google Scholar 

  • Alberotanza, L. & Lechi, G.M. 1978. Frequency analysis of aerial thermal surveys on shallow water: a methodology to describe the geometric distribution of bottom morphology.Proc. Int. Symp. on Remote Sensing for Observation and Inventory of Earth Resources and Endagered Environment, Freiburg, Vol. 2, pp. 1149–1158.

    Google Scholar 

  • Betetto, E. 1973.Variazioni della morfologi lagunare desunte dal confronto fra le carte idrografiche della laguna di Venezia del 1931 e del 1971. Thesis, A.A 1972–73, Faculty of Science, Università di Padova, Padova.

    Google Scholar 

  • Carbognin, L., Marabini, F. & Tosi, L. 1995. Land subsidence and degradation of the Venetian littoral. In: Barends, Brouwer & Schroeder (eds.)Land subsidence, pp. 391–402. IAHS Publ., The Hague.

    Google Scholar 

  • Cavazzoni, S. & Crosera, F. 1987. Turbulent structures dependent on tidal currents in the bottom boundary layer of the Venice lagoon.Il Nuovo Cimento 10/4: 419–431.

    Google Scholar 

  • Cisotto, L. 1968. Confronti fra lo stato attuale della laguna di Venezia e quello risultante da una carta del 1534 e da altri documenti relativi alla vecchia laguna rinascimentale.Boll. Mus. Civ. Stor. Nat. Venezia 18: 69–89.

    Google Scholar 

  • Clark, J.A. & Primus, J.A. 1990. Sea-level changes resulting from future retreat of ice sheeets: an effect of CO2 warming of the climate. In: Toley, M.J. & Shennan, I. (eds.)Sea-level changes, pp. 356–370. Basil Blackwell Inc., Oxford.

    Google Scholar 

  • Congalton, R.G. 1991. A review of assessing the accuracy of classifications of remotely sensed data.Remote Sens. Environ. 37: 35–46.

    Article  Google Scholar 

  • Fitzpatrick-Lins, K. 1981. Comparison of sampling procedures and data analysis for land-use and land-cover map.Photogram. Eng. Remote Sen. 47: 343–351.

    Google Scholar 

  • Gatto, P. & Carbognin, L. 1981. The lagoon of Venice. Natural environment trend and man-induced modification.Hydrol. Sci. Bull. 26/4: 379–391.

    Google Scholar 

  • Goldmann, A., Rabagliati, R. & Sguazzero, P. 1975. Propagazione della marea nella Laguna di Venezia: Analisi dei dati rilevati dalla rete mareografica lagunare negli anni 1972–73.Riv. Ital. Geofis. 2/2: 119–131.

    Google Scholar 

  • Gross, M.F., Hardisky, M.A., Klemas, V. & Wolf, P.L. 1987. Quantification of biomass of the marsh grassSpartina alterniflora Loisel using Landsat Thematic Mapper imagery.Photogram. Eng. Remote Sens. 53: 1577–1583.

    Google Scholar 

  • Haddad, K.D. & Ekberg, D.R. 1989.Potential of Landsat TM imagery for assessing the national status and trends of coastal wetlands. Proc. 5th Symp. on Coastal & Ocean Management, pp. 5192–5201. American Soc. Civil Eng, New York, NY.

    Google Scholar 

  • Hardin, P.J. 1994. Parametric and nearest-neighbor methods for hybrid classification: a comparison of pixel assignment accuracy.Photogramm. Eng. Remote Sensing 60: 1439–1448.

    Google Scholar 

  • Holben, B.N. & Shimabukuro, Y.E. 1993. Linear mixing model applied to coarse resolution data from multispectral satellite sensors.Int. J. Remote Sensing 14/11: 2231–2240.

    Article  Google Scholar 

  • Hurcom, S.J., Taberner, M. & Harrison, A.R. 1993.Mixture modelling of semi-arid vegetation using AVIRIS and SIRIS data. Proc. 25th ERIM Int. Symp., 4–8 April 1993, Vol. 1, pp. 123–134.

  • Jensen, J.R., Cowen, D.J., Althausen, J.D., Narumalani, S. & Weatherbee, O. 1993a. An evaluation of the Coast Watch change detection protocol in South Carolina.Photogramm. Eng. Remote Sens. 59: 1039–1046.

    Google Scholar 

  • Jensen, J.R., Cowen, D.J., Althausen, J.D., Narumalani, S. & Weatherbee, O. 1993b. The detection and prediction of sea level changes on coastal wetlands using satellite imagery and a geographic information system.Geocarto Int. 4: 87–98.

    Article  Google Scholar 

  • Markham, B.L. & Barker, J.L. 1985. Spectral characterization of the LANDSAT Thematic Mapper sensors.Int. J. Remote Sensing 6(5): 697–716.

    Article  Google Scholar 

  • Nilsson, A. 1992.Greenhouse Earth. John Wiley & Sons, Chichester.

    Google Scholar 

  • Richards, J.A. 1986.Remote sensing digital image analysis: an introduction. Springer Verlag, Berlin.

    Book  Google Scholar 

  • Rusconi, A. 1987.Variazione delle superfici componenti il bacino lagunare. Pubblicazionen. 160, Ufficio Idrografico Magistrato alle Acque, Venezia.

    Google Scholar 

  • Santangelo, R., Tomasin, A., Ghermandi, G., Pugnaghi, S. & Canestrelli, P. 1982.High water in Venice. Proc. Conf. “Polders of the world”, Lelystad.

  • Shimabukuro, Y.E. & Smith, J.A. 1991.The least-squares mixing models to generate fraction images derived from remote sensing multispectral data, IEEE Trans. Geosci. Remote Sens. GE-29/1: 16–20.

    Article  Google Scholar 

  • Swain, P.H. & Davis, S.M. 1978.Remote sensing: the quantitative approach. McGraw Hill, New York, NY.

    Google Scholar 

  • Terayama, Y., Ueda, Y., Arai, K. & Matsumoto, M. 1992.A comparative study on the methods for estimation of mixing ratio within a pixel. Proc. 17th ISPRS Symp., Vol. 29-B7, pp. 986–989. Washington, DC.

    Google Scholar 

  • Thomas, R.H. 1986. Future sea level rise and its early detection by satellite remote sensing. In: Titus, J.G. (ed.),Effects of changing stratospheric ozone and global climate, pp. 19–36. US Environ Protection Agency, Washington, DC.

    Google Scholar 

  • Verger, F. & Demathieu, P. 1973. Etude diachronique des surfaces d'eau et des surfaces mouillées sur deux images ERTS 1.Photo-Interprétation, 5: 1–7.

    Google Scholar 

  • Wigley, T.M.L. & Raper, S.C.B. 1993. Future changes in global mean temperature and sea level. In: Warrick, R.A., Barrow, E.M. & Wigley, T.M.L. (eds.),Climate and sea level changes: observations, projections and implications, pp. 111–133. Cambridge University Press, Cambridge.

    Google Scholar 

  • Zilioli, E., Brivio, P.A., Arrigazzi, M. & Lechi, G.M. 1994. Sub-pixel estimation of the Venice lagoon wetlands using Thematic Mapper data. In: Chavez, P.S., Jr., Marino, C.M. & Schowengerdt, R.A. (eds.)Recent Advances in Remote Sensing and Hyperspectral Remote Sensing, pp. 101–108. SPIE 2318, Bellingham, Washington, DC.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brivio P. A..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brivio, P.A., Zilioli, E. Assessing wetland changes in the venice lagoon by means of satellite remote sensing data. J Coast Conserv 2, 23–32 (1996). https://doi.org/10.1007/BF02743034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02743034

Keywords

Navigation