Skip to main content
Log in

Drug-induced circling preference in rats

Correlation with monoamine levels

  • Proceedings of the Symposium Cellular and Molecular Mechanisms of Drugs of Abuse Cocaine and Methamphetamine held in Nice, France, August 19–20, 1993
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Drugs of abuse, such as phencyclidine (PCP), methamphetamine (METH), and cocaine (COC) are known to affect several behaviors in rats, such as motor activity, stereotypy, and circling. In this study, we evaluated whether these drugs produce circling preferences in the presence or absence of unilateral 6-hydroxydopamine (6-OHDA)-induced lesions of the caudate nucleus. Adult male CD rats were lesioned with 10 μg 6-OHDA/site. Animals were dosed with PCP (15 mg/kg, ip), its congener, (+) MK-801 (0.15 mg/kg, ip), METH (2 mg/kg, ip), COC (60 mg/kg, ip), or apomorphine (0.2 mg/kg, ip). circling preference was recorded in control and lesioned rats for 2 h before animals were sacrificed to determine monoamine levels by HPLC/EC. In control animals, administration of these drugs produced 60–70% left circling. In, lesioned animals, these drugs produced 78–90% ipsilateral (toward the lesion) circling, except apomorphine, which produced 60–80% contralateral (away from the lesion) circling. Dopamine (DA) and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) concentrations significantly decreased ipsilaterally in lesioned caudate nucleus (CN) and substantia nigra (SN). However, no significant changes were observed in nucleus accumbens (NA) and olfactory tubercles (OT). These data demonstrate that drugs of abuse like PCP, its congener (+) MK-801, METH, and COC produce a greater preference to turn toward the left than the right, a finding similar to that found in human psychosis. Since 6-OHDA lesions enhanced the circling bias and depleted DA and its metabolites DOPAC and HVA, it also suggests that the dopaminergic system may be involved in the circling behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali S. F., Newport G. D., and Bracha H. S. (1992) Phencyclidine, (+)-MK-801 and TCP-induced circling preference: correlation with monoamine levels in selected regions of the rat brain.Soc. Neurosci. Abstr. 449, 11.

    Google Scholar 

  • Ali S. F., David S., and Newport G. D. (1993a) Agerelated susceptibility to MPTP-induced neurotoxicity in mice.Neurotoxicology 14, 29–34.

    PubMed  CAS  Google Scholar 

  • Ali S. F., Burt R. L., Newport G. D., and Bracha H. S. (1993b) Drug-induced circling preference in rats: correlation with monoamine levels.Teratology 463, NBTS32.

  • Ali S. F., Newport G. D., and Bracha H. S. (1994a) Phencyclidine and (+) MK-801-induced circling preference: correlation with monoamine levels in striatum of the rat brain.Neurotox. Teratol. 16, 335–342.

    Article  CAS  Google Scholar 

  • Ali S. F., Newport G. D., Holson R. R., Slikker W., Jr., and Bowyer J. F. (1994b) Low environmental temperature or pharmacologic agents that produce hypothermia decrease methamphetamine neurotoxicity in mice.Brain Res. 658, 33–38.

    Article  PubMed  CAS  Google Scholar 

  • Arnt. J. and Hyttel J. (1985) Differential involvement of dopamine D1 and D3 receptors in the circling behavior induced by apomorphine, SKF-38393 pergolide and LY 171555 in 6-hydroxydopaminelesioned rats.Psychopharmacology 85, 346–352.

    Article  PubMed  CAS  Google Scholar 

  • Bracha H. S. (1989) Is there a right-hemi-hypredopaminergic psychosis?.Schizophrenia Res. 2, 317–324.

    Article  CAS  Google Scholar 

  • Bracha H. S. (1987) Asymmetric rotational (circling) behavior, a dopamine-related asymmetry: preliminary finding in unmedicated and never-medicated schizophrenic patients.Biol. Psychiatr. 22, 995–1003.

    Article  CAS  Google Scholar 

  • Bracha H. S., Livingston R. L., Clotheir J., Linington B. B., and Karson C. N. (1993) Correlation of severity of psychiatric patient’s delusions with right hemispatial inattention (left turning behavior).Am. J. Psychiatr. 150, 330–332.

    PubMed  CAS  Google Scholar 

  • Christie J. and Crow T. J. (1971) Turning behavior as an index of the action of amphetamines and ephedrine on central dopamine-containing neurons.Br. J. Pharmacol. 43, 658–667.

    PubMed  CAS  Google Scholar 

  • Domino E. F. and Luby E. D. (1981) Abnormal mental states induced by phencyclidine as a model for schizophrenia, inPCP (Phenyclidine): Historical and Current Perspectives (Domino E. F., ed.), NPP Books, Ann Arbor, MI, pp. 401–418.

    Google Scholar 

  • Duncan D. B. (1955) Multiple range and multiple F-test.Biometrics 11, 1–10.

    Article  Google Scholar 

  • Early T. S., Reiman E. M., Raichel M. E., and Spitzinagel E. L. (1987) Left globus pallidus abnormality in nerver-medicated patients with schizophrenia.Proc. Natl. Acad. Sci. USA 84, 561–564.

    Article  PubMed  CAS  Google Scholar 

  • Early T. S., Posner M. I., Reiman E. M., and Raichle M. E. (1989) Hyperactivity of the striato-pallidal projection, Part I: lower level of theory.Psychiatr. Dev. 2, 1075–1081.

    Google Scholar 

  • Ellison G., Eison M. S., Huberman H. S., and Daniel F. (1978) Long-term changes in dopaminergic innveration of caudate nucleus after continuous amphetamine administration.Science 201, 276–278.

    Article  PubMed  CAS  Google Scholar 

  • Fessler R. G., Sturgeon R. D., and Meltzer H. Y. (1979) Phencyclidine-induced ipsilateral rotation in rats with unilateral 6-hydroxydopamine-induced lesions of the substantia nigra.Life Sci. 24, 1281–1288.

    Article  PubMed  CAS  Google Scholar 

  • George F. R. and Ritz M. C. (1990) Cocaine produces locomotor stimulation in SS-mice but not in LS-mice: relationship to dopaminergic function.Psychopharmacology 101, 18–22.

    Article  PubMed  CAS  Google Scholar 

  • Glick S. D. and Cox R. D. (1978) Nocturnal rotation in normal rats: correlation with amphetamine-induced rotation and effects of nigrostriatal lesions.Brain Res. 150, 149–161.

    Article  PubMed  CAS  Google Scholar 

  • Glick S. D., Hinds P. A., and Shapiro R. M. (1983) Cocaine-induced rotation, sex-dependent differences between left and right sided rats.Science 221, 777.

    Article  Google Scholar 

  • Glick S. D., Meibach R. C., Cox R. D., and Maayanii S. (1980) Phencyclidine-induced rotation and hippocampal modulation of nigrostriatal asymmetry.Brain Res. 196, 99–107.

    Article  PubMed  CAS  Google Scholar 

  • Glick S. D. and Ross D. A. (1981) Lateralization of function in the rat brain mechanisms may be operative in humans.Trends Neurosci. 4, 198, 199.

    Article  Google Scholar 

  • Greenberg B. D. and Segal D. S. (1985) Acute and chronic behavioral interaction between phencyclidine (PCP) and amphetamine: evidence for a dopaminergic role is some PCP-induced behaviors.Pharmacol. Biochem. Behav. 23, 99–105.

    Article  PubMed  CAS  Google Scholar 

  • Gur R. E., Gur R. C., Skolnick B. E., Caroff S., Obrist W. D., Resnick S., and Reivich M. (1985) Brain function in psychiatric disorders: III. regional cerebral blood flow in unmedicated schizophrenics.Arch. Gen. Psychiatr. 42, 329–334.

    PubMed  CAS  Google Scholar 

  • Herrear-Marschwitz M. and Ungerstedt U. (1985) Effect of the dopamine D1 antagonist SCH 23390 on rotational behavior induced by apomorphine and pergolide in 6-hydroxydopamine denervated rats.Eur. J. Pharmacol. 109, 349–354.

    Article  Google Scholar 

  • Hiramatsu M., Cho A. K., and Nabeshima T. (1989) Comparison of the behavioral and biochemical effects of the NMDA receptor antagonist, MK-801 and phencyclidine.,Eur. J. Pharmacol. 166, 359–366.

    Article  PubMed  CAS  Google Scholar 

  • Iversan S. D., Singh L., Oles R. J., Preston C., and Tricklebank M. D. (1988) Psychopharmacological profile of theN-methyl-d-aspartate (NMDA) receptor antagonist, MK-801, inSigma and Phencyclidine-Like Compounds as Molecular Probe in Biology (Domino E. F. and Kamenka J. M., eds.), NPP Books, Ann Arbor, MI, p. 373.

    Google Scholar 

  • Jaffe J. H. (1990) Drug addiction and drug abuse, inThe Pharmacological Basis of Therapeutics (Gilman A. G., Rall T. H., Nies A. S., and Taylor eds.), Pergamon, p. 550.

  • Javitt D. C. and Zukin S. R. (1991) Recent advances in the Phencyclidine model of schizophrenia.Am. J. Psychiatr. 148, 1301–1308.

    PubMed  CAS  Google Scholar 

  • Jerussi T. P. and Glick S. D. (1974) Amphetamine induced rotation in rats without lesionsNeuropharmacology 13, 283–286.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson G., Jason A. L., and Vigouret J. M. (1988) Dopamine-D1-receptor and dopamine-D2-receptor interaction in turning behavior induced by dopamine agonist in 6-hydroxydopamine-lesioned rats.Neurosci. Lett. 88, 69–74.

    Article  PubMed  CAS  Google Scholar 

  • Kanner M., Finnega K., and Meltzer H. Y. (1975) Dopaminergic effects of phencyclidine in rats with nigrostriatal lesions.Psychopharmacol. Commun. 114, 393–401.

    Google Scholar 

  • Kogan F. J., Nichols W. K., and Gibb J. W. (1976) Influence of methamphetamine on nigral and striatal tyrosine hydroxylase activity and on striatal dopamine levels.Eur. J. Pharmacol. 36, 363–371.

    Article  PubMed  CAS  Google Scholar 

  • Luby E. D., Gottileb J. S., Cohen B. D., Rosenbaum G., and Domino E. F. (1962) Model psychosis and schizophrenia.Am. J. Psychiatr. 119, 61–67.

    Google Scholar 

  • Marwaha J. (1982) Candidate mechanisms underlying PCP-induced psychosis: an electrophysiological, behavioral and biochemical study.Biol. Psychiatr. 17, 155–198.

    CAS  Google Scholar 

  • Nabeshima T. (1986) Effects of phencyclidine the drug induces psychosis on the central nervous system.J. Pharma. Soc. Jpn. 106, 351–370.

    CAS  Google Scholar 

  • Nabeshima T., Yamaguchi K., Hiramatsu M., Amano M., Furukawa H., and Kameyama T. (1984) Sertogenergic involvement in phencyclidine-induced behaviors.Pharmacol. Biochem. Behav. 21, 401–408.

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G. and Watson C. (1986)The Rat Brain in Stereotaxic Coordinates. Academic, New York.

    Google Scholar 

  • Reith M. E. A., Sershen H., and Lajtha A. (1982) Binding of3H-labeled cocaine in mouse brain-kinetics and saturability.J. Receptor Res. 2, 233–243.

    Google Scholar 

  • Scalzo F. M. and Holson R. R. (1992) The ontogeny of behavioral sensitization to phencyclidine.Neurotoxcol., Teratol. 14, 7–14.

    Article  CAS  Google Scholar 

  • Seiden L. S., Fischman M. W., and Schuster C. R. (1975) Long-term methamphetamine induced changes in brain catecholamines in tolerance rhesus monkeys.Drug Alcohol Depend. 1, 215–219.

    Article  Google Scholar 

  • Thadani U. and Whitsett T. L. (1991) Beta- adrenergic blockers and intermittent claudication-time for reappraisal.Arch. Int. Med. 151, 1705–1707.

    Article  CAS  Google Scholar 

  • Ungerstedt V. and Arbuthnot G. W. (1970) Quantitative recording of behavior in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system.Brain Res. 24, 485–493.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, S.F., Kordsmeier, K.J. & Gough, B. Drug-induced circling preference in rats. Mol Neurobiol 11, 145–154 (1995). https://doi.org/10.1007/BF02740691

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02740691

Index Entries

Navigation