Skip to main content
Log in

RC3/neurogranin, a postsynaptic calpacitin for setting the response threshold to calcium influxes

  • Original Articles
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

In this review, we attempt to cover the descriptive, biochemical and molecular biological work that has contributed to our current knowledge about RC3/neurogranin function and its role in dendritic spine development, long-term potentiation, long-term depression, learning, and memory. Based on the data reviewed here, we propose that RC3, GAP-43, and the small cereballum-enriched peptide, PEP-19, belong to a protein family that we have named the calpacitins. Membership in this family is based on sequence homology and, we believe, a common biochemical function. We propose a model wherein RC3 and GAP-43 regulate calmodulin availability in dendritic spines and axons, respectively, and calmodulin regulates their ability to amplify the mobilization of Ca2+ in response to metabotropic glutamate receptor stimulation. PEP-19 may serve a similar function in the cerebellum, although biochemical characterization of this molecule has lagged behind that of RC3 and GAP-43. We suggest that these molecules release CaM rapidly in response to large influxes of Ca2+ and slowly in response to small increases. This nonlinear response is analogous to the behavior of a capacitor, hence the name calpacitin. Since CaM regulates the ability of RC3 to amplify the effects of metabotropic glutamate receptor agonists, this activity must, necessarily, exhibit nonlinear kinetics as well. The capacitance of the system is regulated by phosphorylation by protein kinase C, which abrogates interactions between calmodulin and RC3 or GAP-43. We further propose that the ratio of phosphorylated to unphosphorylated RC3 determines the sliding LTP/LTD threshold in concert with Ca2+/calmodulin-dependent kinase II. Finally, we suggest that the close association between RC3 and a subset of mitochondria serves to couple energy production with the synthetic events that accompany dendritic spine development and remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeliovich A., Chen C., Goda Y., Silva A. J., Stevens C. F., and Tonegawa S. (1993) Modified hippocampal long-term potentiation in PKC gammamutant mice.Cell 75, 1253–1262.

    PubMed  CAS  Google Scholar 

  • Aigner L., Arber S., Kapfhammer J. P., Laux T., Schneider C., Botteri F., Brenner H. R., and Caroni P. (1995a) Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice.Cell 83, 269–278.

    PubMed  CAS  Google Scholar 

  • Aigner L. and Caroni P. (1995b) Absence of persistent spreading, branching, and adhesion in GAP-43-depleted growth cones.J. Cell Biol. 128, 647–660.

    PubMed  CAS  Google Scholar 

  • Alexander K. A., Cimler B. M., Meier K. E., and Storm D. R. (1987) Regulation of calmodulin binding to P-57. A neurospecific calmodulin binding protein.J. Biol. Chem. 262, 6108–6113.

    PubMed  CAS  Google Scholar 

  • Alexander K. A., Wakim B. T., Doyle G. S., Walsh K. A., and Storm D. R. (1988) Identification and characterization of the calmodulin-binding domain of neuromodulin, a neurospecific calmodulin-binding protein.J. Biol. Chem. 263, 7544–7549.

    PubMed  CAS  Google Scholar 

  • Alvarez-Bolado G., Rodriguez-Sanchez P., Tejero-Diez P., Fairen A., and Diez-Guerra F. J. (1996) Neurogranin in the development of the rat telencephalon.Neuroscience 73, 565–580.

    PubMed  CAS  Google Scholar 

  • Angenstein F., Riedel G., Reymann K. G., and Staak S. (1994) Hippocampal long-term potentiation in vivo induces translocation of protein kinase C gamma.Neuroreport 5, 381–384.

    PubMed  CAS  Google Scholar 

  • Apel E. D., Byford M. F., Au D., Walsh K. A., and Storm D. R. (1990) Identification of the protein kinase C phosphorylation site in neuromodulin.Biochemistry 29, 2330–2335.

    PubMed  CAS  Google Scholar 

  • Apel E. D., Litchfield D. W., Clark R. H., Krebs E. G., and Storm D. R. (1991) Phosphorylation of neuromodulin (GAP-43) by casein kinase II. Identification of phosphorylation sites and regulation by calmodulin.J. Biol. Chem. 266, 10,544–10,551.

    CAS  Google Scholar 

  • Apel E. D. and Storm D. R. (1992) Functional domains of neuromodulin (GAP-43).Perspectives Development. Neurobiol. 1, 3–11.

    CAS  Google Scholar 

  • Baizer L., Alkan S., Stocker K., and Ciment G. (1990) Chicken growth-associated protein (GAP)-43: primary structure and regulated expression of mRNA during embryogenesis.Brain Res. Mol. Brain Res. 7, 61–68.

    PubMed  CAS  Google Scholar 

  • Bank B., LoTurco J. J., and Alkon D. L. (1989) Learning-induced activation of protein kinase C. A molecular memory trace.Mol. Neurobiol. 3, 55–70.

    PubMed  CAS  Google Scholar 

  • Basi G. S., Jacobson R. D., Virag I., Schilling J., and Skene J. H. (1987) Primary structure and transcriptional regulation of GAP-43, a protein associated with nerve growth.Cell 49, 785–791.

    PubMed  CAS  Google Scholar 

  • Baudier J., Bronner C., Kligman D., and Cole R. D. (1989) Protein kinase C substrates from bovine brain. Purification and characterization of neuromodulin, a neuron-specific calmodulin-binding protein.J. Biol. Chem. 264, 1824–1828.

    PubMed  CAS  Google Scholar 

  • Baudier J., Deloulme J. C., Van Dorsselaer A., Black D., and Matthes H. W. (1991) Purification and characterization of a brain-specific protein kinase C substrate, neurogranin (p17). Identification of a consensus amino acid sequence between neurogranin and neuromodulin (GAP43) that corresponds to the protein kinase C phosphorylation site and the calmodulin-binding domain.J. Biol. Chem. 266, 229–237.

    PubMed  CAS  Google Scholar 

  • Benowitz L. I., Apostolides P. J., Perrone-Bizzozero N., Finklestein S. P., and Zwiers H. (1988) Anatomical distribution of the growth-associated protein GAP-43/B-50 in the adult rat brain.J. Neurosci. 8, 339–352.

    PubMed  CAS  Google Scholar 

  • Bienenstock E. L., Cooper L. N., and Munro P. W. (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex.J. Neurosci. 2, 32–48.

    PubMed  CAS  Google Scholar 

  • Blue M. E. and Parnavelas J. G. (1983) The formation and maturation of synapses in the visual cortex of the rat. II. Quantitative analysis.J. Neurocytol. 12, 697–712.

    PubMed  CAS  Google Scholar 

  • Bortolotto Z. A., Bashir Z. I., Davies C. H., and Collingridge G. L. (1994) A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation.Nature 368, 740–743.

    PubMed  CAS  Google Scholar 

  • Bredt D. S. and Snyders S. H. (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme.Proc. Natl. Acad. Sci. USA 87, 682–685.

    PubMed  CAS  Google Scholar 

  • Brown T. H., Kairiss E. W., and Kernan C. C. (1990) Hebbian synapses: Biophysical mechanisms and algorithms.Ann. Rev. Neurosci. 13, 475–511.

    PubMed  CAS  Google Scholar 

  • Buchsbaum R., Telliez J. B., Goonesekera S., and Feig L. A. (1996) The N-terminal pleckstrin, coiled-coil, and IQ domains of the exchange factor Ras-GRF act cooperatively to facilitate activation by calcium.Mol. Cell Biol. 16, 4888–4896.

    PubMed  CAS  Google Scholar 

  • Buelt M. K., Glidden B. J., and Storm D. R. (1994) Regulation of p68 RNA helicase by calmodulin and protein kinase C.J. Biol. Chem. 269, 29,367–29,370.

    CAS  Google Scholar 

  • Caroni P. and Becker M. (1992) The downregulation of growth-associated proteins in motoneurons at the onset of synapse elimination is controlled by muscle activity and IGF1.J. Neurosci. 12, 3849–3861.

    PubMed  CAS  Google Scholar 

  • Chang D. K., Chien W. J., and Arunkumar A. I. (1997) Conformation of a protein kinase C substrate NG(28–43), and its analog in aqueous and sodium dodecyl sulfate micelle solutions.Biophys. J. 72, 554–566.

    PubMed  CAS  Google Scholar 

  • Chapman E. R., Au D., Alexander K. A., Nicolson T. A., and Storm D. R. (1991a) Characterization of the calmodulin binding domain of neuromodulin. Functional significance of serine 41 and phenylalanine 42.J. Biol. Chem. 266, 207–213.

    PubMed  CAS  Google Scholar 

  • Chapman E. R., Au D., Nicolson T. A., and Storm D. R. (1991b) Mutagenesis of the calmodulin binding domain of neuromodulin.Prog. Brain Res. 89, 37–44.

    PubMed  CAS  Google Scholar 

  • Chavez-Noriega L. E. and Stevens C. F. (1994). Increased transmitter release at excitatory synapses produced by direct activation of adenylate cyclase in rat hippocampal slices.J. Neurosci. 14, 310–317.

    PubMed  CAS  Google Scholar 

  • Chen H., Bouras C., and Antonarakis S. E. (1996) Cloning of the cDNA for a human homolog of the rat PEP-19 gene and mapping to chromosome 21q22.2-q22.3.Human Genetics 98, 672–677.

    PubMed  CAS  Google Scholar 

  • Chen S.-J., Klann E., and Sweatt J. D. (1994) Maintenance of LTP is associated with an increase in the phosphorylation of RC3/neurogranin protein.Soc. for Neurosci. Abstr. 20, 703.5.

    Google Scholar 

  • Chen S.-J., Klann E., Gower M. C., Powell C. M., Sessoms J. S., and Sweatt J. D. (1993) Studies with synthetic peptide substrates derived from the neuronal protein neurogranin reveal structural determinants of potency and selectivity for protein kinase C.Biochemistry 32, 1032–1039.

    PubMed  CAS  Google Scholar 

  • Chen S.-J., Sweatt J. D., and Klann E. (1997) Enhanced phosphorylation of the postsynaptic protein kinase C substrate RC3/neurogranin during long-term potentiation.Brain Res. 749, 181–187.

    PubMed  CAS  Google Scholar 

  • Chen S. L. and Orr H. T. (1990) Sequence of a murine cDNA, pcp-4, that encodes the homolog of the rat brain-specific antigen PEP-19.Nucleic Acids Res. 18, 1304.

    PubMed  CAS  Google Scholar 

  • Chetkovich D. M. and Sweatt J. D. (1993) nMDA receptor activation increases cyclic AMP in area CA1 of the hippocampus via calcium/calmodulin stimulation of adenylyl cyclase.J. Neurochem. 61, 1933–1942.

    PubMed  CAS  Google Scholar 

  • Chicurel M. E., Terrian D. M., and Potter H. (1993) mRNA at the synapse: analysis of a synaptosomal preparation enriched in hippocampal dendritic spines.J. Neurosci. 13, 4054–4063.

    PubMed  CAS  Google Scholar 

  • Cimler B. M., Andreasen T. J., Andreasen K. I., and Storm D. R. (1985) P-57 is a neural specific calmodulin-binding protein.J. Biol. Chem. 260, 10,784–10,788.

    CAS  Google Scholar 

  • Cimler B. M., Giebelhaus D. H., Wakim B. T., Storm D. R., and Moon R. T. (1987) Characterization of murine cDNAs encoding P-57, a neural-specific calmodulin-binding protein.J. Biol. Chem. 262, 12,158–12,163.

    CAS  Google Scholar 

  • Coggins P. J., McLean K., Nagy A., and Zwiers H. (1993a) ADP-ribosylation of the neuronal phosphoprotein B-50/GAP-43.J. Neurochem. 60, 368–371.

    PubMed  CAS  Google Scholar 

  • Coggins P. J., McLean K., and Zwiers H. (1993b) Neurogranin, a B-50/GAP-43-immunoreactive C-kinase substrate (BICKS), is ADP-ribosylated.FEBS Lett. 335, 109–113.

    PubMed  CAS  Google Scholar 

  • Coggins P. J., Stanisz J., Nagy A., and Zwiers H. (1995) Identification of a calmodulin-binding B-50-immunoreactive C-kinase substrate (BICKS) in bovine brain.Neurosci. Res. Commun. 8, 49–56.

    Google Scholar 

  • Coggins P. J. and Zwiers H. (1991) B-50 (GAP-43): biochemistry and functional neurochemistry of a neuron-specific phosphoprotein.J. Neurochem. 56, 1095–1106.

    PubMed  CAS  Google Scholar 

  • Cohen R. W., Margulies J. E., Coulter P. M. II, Watson J. B., and Coulter P. M. 2d (1993) Functional consequences of expression of the neuron-specific, protein kinase C substrate RC3 (neurogranin) inXenopus oocytes. Functional consequences of expression of the neuron-specific, protein kinase C substrate RC3 (neurogranin) in Xenopus oocytes.Brain Res. 627, 147–152.

    PubMed  CAS  Google Scholar 

  • Connor J. A., Miller L. D., Petrozzino J., and Muller W. (1994) Calcium signaling in dendritic spines of hippocampal neurons.J. Neurobiol. 25, 234–242.

    PubMed  CAS  Google Scholar 

  • Crusio W. E. and Schwegler H. (1991) Early postnatal hyperthyroidism improves both working and reference memory in a spatial radial-maze task in adult mice.Physiol. Behav. 50, 259–261.

    PubMed  CAS  Google Scholar 

  • Danielson P. E., Watson J. B., Gerendasy D. D., Erlander M. G., Lovenberg T. W., de Lecea L., Sutcliffe J. G., and Frankel W. N. (1994) Chromosomal mapping of mouse genes expressed selectively within the central nervous system.Genomics 19, 454–461.

    PubMed  CAS  Google Scholar 

  • Dasgupta M., Honycutt T., and Blumenthal D. K. (1989) The gamma subunit of skeletal muscle phosphorylase kinase contains two noncontiguous domains that act in concert to bind calmodulin.J. Biol. Chem. 264, 17,156–17,163.

    CAS  Google Scholar 

  • De Graan P. N., Moritz A., De Wit M., and Gispen W. H. (1993) Purification of B-50 by 2-mercaptoethanol extraction from rat brain synaptosomal plasma membranes.Neurochem. Res. 18, 875–881.

    PubMed  Google Scholar 

  • De Graan P. N., Hens J. J., and Gispen W. H. (1994) Presynaptic PKC substrate B-50 (GAP-43) and neurotransmitter release: studies with permeated synaptosomes.Neurotoxicology 15, 41–47.

    Google Scholar 

  • De Graan P. N., Ramakers G. M., Heinen I. H., and Gispen W. H. (1996) Biphasic changes in the phosphorylation state of identified pre- and postsynaptic PKC substrates during LTD.Soc. Neurosci. Abstr. 22, 206.11.

    Google Scholar 

  • De Graan P. N. and Gispen W. H. (1993) The role of B-50/GAP-43 in transmitter release: studies with permeated synaptosomes.Biochem. Soc. Trans. 21, 406–410.

    PubMed  Google Scholar 

  • Dekker L. V., De Graan P. N., and Gispen W. H. (1991) Transmitter release: target of regulation by protein kinase C?.Prog. Brain Res. 89, 209–233.

    PubMed  CAS  Google Scholar 

  • Deloulme J. C., Sensenbrenner M., and Baudier J. (1991) A rapid purification method for neurogranin, a brain specific calmodulin-binding protein kinase C substrate.FEBS Lett. 282, 183–188.

    PubMed  CAS  Google Scholar 

  • Di Luca M., Pastorino L., Raverdino V., De Graan P. N., Caputi A., Gispen W. H., and Cattabeni F. (1996) Determination of the endogenous phosphorylation state of B-50/GAP-43 and neurogranin in different brain regions by electrospray mass spectrometry.FEBS Lett. 389, 309–313.

    PubMed  Google Scholar 

  • Doster S. K., Lozano A. M., Aguayo A. J., and Willard M. B. (1991) Expression of the growth-associated protein GAP-43 in adult rat retinal ganglion cells following axonal injury.Neuron 6, 635–647.

    PubMed  CAS  Google Scholar 

  • Dudek S. M. and Bear M. F. (1993) Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus.J. Neurosci. 13, 2910–2918.

    PubMed  CAS  Google Scholar 

  • Espreafico E. M., Cheney R. E., Matteoli M., Nascimento A. A., De Camilli P. V., Larson R. E., and Mooseker M. S. (1992) Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains.J. Cell Biol. 119, 1541–1557.

    PubMed  CAS  Google Scholar 

  • Fedorov N. B., Pasinelli P., Oestreicher A. B., De Graan P. N., and Reymann K. G. (1995) Antibodies to postsynaptic PKC substrate neurogranin prevent long-term potentiation in hippocampal CA1 neurons.Eur. J. Neurosci. 7, 819–822.

    PubMed  CAS  Google Scholar 

  • Fukunaga K., Muller D., and Miyamoto E. (1995) Increased phosphorylation of Ca2+/calmodulin-dependent protein kinase II and its endogenous substrates in the induction of long-term potentiation.J. Biol. Chem. 270, 6119–6124.

    PubMed  CAS  Google Scholar 

  • Gerendasy D. D., Herron S. R., Watson J. B., and Sutcliffe J. G. (1994a) Mutational and biophysical studies suggest RC3/neurogranin regulates calmodulin availability.J. Biol. Chem. 269, 22,420–22,426.

    CAS  Google Scholar 

  • Gerendasy D. D., Herron S. R., Wong K. K., Watson J. B., and Sutcliffe J. G. (1994b) Rapid purification, site-directed mutagenesis, and initial characterization of recombinant RC3/neurogranin.J. Mol. Neurosci. 5, 133–148.

    PubMed  CAS  Google Scholar 

  • Gerendasy D. D., Herron S. R., Jennings P. A., and Sutcliffe J. G. (1995a) Calmodulin stabilizes an amphiphilic alpha-helix within RC3/neurogranin and GAP-43/neuromodulin only when Ca2+ is absent.J. Biol. Chem. 270, 6741–6750.

    PubMed  CAS  Google Scholar 

  • Gerendasy D. D., Jennings P. A., Watson J. B., and Sutcliffe J. G. (1995b) RC3: a potential switch for the induction of LTP and LTD.Soc. Neurosci. Abst. 21, 245.15.

    Google Scholar 

  • Gianotti C., Nunzi M. G., Gispen W. H., and Corradetti R. (1992) Phosphorylation of the presynaptic protein B-50(GAP-43) is increased during electrically induced long-term potentiation.Neuron 8, 843–848.

    PubMed  CAS  Google Scholar 

  • Gispen W. H., Nielander H. B., De Graan P. N., Oestreicher A. B., Schrama L. H., and Schotman P. (1991) Role of the growth-associated protein B-50/GAP-43 in neuronal plasticity.Mol. Neurobiol. 5, 61–85.

    PubMed  CAS  Google Scholar 

  • Gonzalez A., Klann E., Sessoms J. S., and Chen S. J. (1993) Use of the synthetic peptide neurogranin (28–43) as a selective protein kinase C substrate in assays of tissue homogenates.Anal. Biochem. 215, 184–189.

    PubMed  CAS  Google Scholar 

  • Gould E., Allan M. D., and McEwen B. S. (1990) Dendritic spine density of adult hippocampal pyramidal cells is sensitive to thyroid hormone.Brain Res. 525, 327–329.

    PubMed  CAS  Google Scholar 

  • Gould E., Woolley C. S., and McEwen B. S. (1991) The hippocampal formation: morphological changes induced by thyroid, gonadal and adrenal hormones.Psychoneuroendocrinology 16, 67–84.

    PubMed  CAS  Google Scholar 

  • Gunter T. E., Gunter K. K., Sheu S. S., and Gavin C. E. (1994) Mitochondrial calcium transport: physiological and pathological relevance.Am. J. Physiol. 267, C313–339.

    PubMed  CAS  Google Scholar 

  • Hajnoczky G., Robb-Gaspers L. D., Seitz M. B., and Thomas A. P. (1995) Decoding of cytosolic calcium oscillations in the mitochondria.Cell 82, 415–424.

    PubMed  CAS  Google Scholar 

  • Hansford R. G. (1994) Physiological role of mitochondrial Ca2+ transport.J. Bioenerg. Biomembr. 26, 495–508.

    PubMed  CAS  Google Scholar 

  • Hart M. J., Callow M. G., Souza B., and Polakis P. (1996) IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs.EMBO J. 15, 2997–3005.

    PubMed  CAS  Google Scholar 

  • Hashimoto T., Ase K., Sawamura S., Kikkawa U., Saito N., Tanaka C., and Nishizuka Y. (1988) Postnatal development of a brain-specific subspecies of protein kinase C in rat.J. Neurosci. 8, 1678–1683.

    PubMed  CAS  Google Scholar 

  • Hens J. J., De Wit M., Boomsma F., Mercken M., Oestreicher A. B., Gispen W. H., and De Graan P. N. (1995) N-terminal-specific anti-B-50 (GAP-43) antibodies inhibit Ca(2+)-induced noradrenaline release, B-50 phosphorylation and dephosphorylation, and calmodulin binding.J. Neurochem. 64, 1127–1136.

    PubMed  CAS  Google Scholar 

  • Hess D. T., Patterson S. I., Smith D. S., and Skene J. H. (1993) Neuronal growth cone collapse and inhibition of protein fatty acylation by nitric oxide.Nature 366, 562–565.

    PubMed  CAS  Google Scholar 

  • Houbre D., Duportail G., Deloulme J. C., and Baudier J. (1991) The interactions of the brain-specific calmodulin-binding protein kinase C substrate, neuromodulin (GAP 43), with membrane phospholipids.J. Biol. Chem. 266, 7121–7131.

    PubMed  CAS  Google Scholar 

  • Huang K. P. (1990) Role of protein kinase C in cellular regulation.Biofactors 2, 171–178.

    PubMed  CAS  Google Scholar 

  • Huang K. P., Huang F. L., and Chen H. C. (1993) Characterization of a 7.5-kDa protein kinase C substrate (RC3 protein, neurogranin) from rat brain.Arch. Biochem. Biophys. 305, 570–580.

    PubMed  CAS  Google Scholar 

  • Hvalby O., Hemmings H. C. Jr., Paulsen O., Czernik A. J., Nairn A. C., Godfraind J. M., Jensen V., Raastad M., Storm J. F., Andersen P., and Greengard P. (1994) Specificity of protein kinase inhibitor peptides and induction of long-term potentiation.Proc. Natl. Acad. Sci. USA 91, 4761–4765.

    PubMed  CAS  Google Scholar 

  • Iniguez M. A., Rodriguez-Pena A., Ibarrola N., Morreale de Escobar G., and Bernal J. (1992) Adult rat brain is sensitive to thyroid hormone. Regulation of RC3/neurogranin mRNA.J. Clin. Invest. 90, 554–558.

    PubMed  CAS  Google Scholar 

  • Iniguez M. A., Rodriguez-Pena A., Ibarrola N., Aguilera M., Munoz A., and Bernal J. (1993) Thyroid hormone regulation of RC3, a brain-specific gene encoding a protein kinase-C substrate.Endocrinology 133, 467–473.

    PubMed  CAS  Google Scholar 

  • Iniguez M. A., Morte B., Rodriguez-Pena A., Munoz A., Gerendasy D., Sutcliffe J. G., and Bernal J. (1994) Characterization of the promoter region and flanking sequences of the neuron-specific gene RC3 (neurogranin).Mol. Brain Res. 27, 205–214.

    PubMed  CAS  Google Scholar 

  • Iniguez M. A., de Lecea L., Guadano-Ferraz A., Morte B., Gerendasy D., Sutcliffe J. G., and Bernal J. (1996) Cell-specific effects of thyroid hormone on RC3/neurogranin expression in rat brain.Endocrinology 137, 1032–1041.

    PubMed  CAS  Google Scholar 

  • Insel T. R., Miller L. P., and Gelhard R. E. (1990) The ontogeny of excitatory amino acid receptors in rat forebrain—I. N-methyl-D-aspartate and quisqualate recetors.Neuroscience 35, 31–43.

    PubMed  CAS  Google Scholar 

  • Ivins K. J., Neve K. A., Feller D. J., Fidel S. A., and Neve R. L. (1993) Antisense GAP-43 inhibits the evoked release of dopamine from PC12 cells.J. Neurochem. 60, 626–633.

    PubMed  CAS  Google Scholar 

  • Klann E., Chen S. J., and Sweatt J. D. (1992) Increased phosphorylation of a 17-kDa protein kinase C substrate (P17) in long-term potentiation.J. Neurochem. 58, 1576–1579.

    PubMed  CAS  Google Scholar 

  • Klann E., Chen S. J., and Sweatt J. D. (1993) Mechanism of protein kinase C activation during the induction and maintenance of long-term, potentiation probed using a selective peptide substrate.Proc. Natl. Acad. Sci. USA 90, 8337–8341.

    PubMed  CAS  Google Scholar 

  • Kosik K. S., Orecchio L. D., Bruns G. A., Benowitz L. I., MacDonald G. P., Cox D. R., and Neve R. L. (1988) Human GAP-43: its deduced amino acid sequence and chromosomal localization in mouse and human.Neuron 1, 127–132.

    PubMed  CAS  Google Scholar 

  • LaBate M. E. and Skene J. H. (1989) Selective conservation of GAP-43 structure in vertebrate evolution,Neuron 3, 299–310.

    PubMed  CAS  Google Scholar 

  • Ladant D. (1988) Interaction of Bordetella pertussis adenylate cyclase with calmodulin.J. Biol. Chem. 263, 2612–2618.

    PubMed  CAS  Google Scholar 

  • Landry C. F., Watson J. B., Kashima T., and Campagnoni A. T. (1994) Cellular influences on RNA sorting in neurons and glia: an in situ hybridization histochemical study.Mol. Brain Res. 27, 1–11.

    PubMed  CAS  Google Scholar 

  • Lester D. S. and Bramham C. R. (1993) Persistent, membrane-associated protein kinase C: from model membranes to synaptic long-term potentiation.Cellular Signalling 5, 695–708.

    PubMed  CAS  Google Scholar 

  • Lin H. Y., Thacore H. R., Davis F. B., Martino L. J., and Davis P. J. (1996a) Potentiation by thyroxine of interferon-gamma-induced HLA-DR expression is protein kinase A- and C-dependent.J. Interferon Cytokine Res. 16, 17–24.

    PubMed  CAS  Google Scholar 

  • Lin H. Y., Thacorf H. R., Davis F. B., and Davis P. J. (1996b) Potentiation by thyroxine of interferongamma-induced antiviral state requires PKA and PKC activities.Am. J. Physiol. 271, C1256-C1261.

    PubMed  CAS  Google Scholar 

  • Liu Y., Fisher D. A., and Storm D. R. (1993) Analysis of the palmitoylation, and membrane targeting domain of neuromodulin (GAP-43) mutants modified in the membrane targeting domain.J. Neurosci. 14, 5807–5817.

    Google Scholar 

  • Liu Y. and Storm D. R. (1990) Regulation of free calmodulin levels by neuromodulin: neuron growth and regeneration.Trends Pharmacol. Sci. 11, 107–111.

    PubMed  CAS  Google Scholar 

  • Liu Y. C., Chapman E. R., and Storm D. R. (1991) Targeting of neuromodulin (GAP-43) fusion proteins to growth cones in cultured rat embryonic neurons.Neuron 6, 411–420.

    PubMed  CAS  Google Scholar 

  • Liu Y. C. and Storm D. R. (1989) Dephosphorylation neuromodulin by calcineurin.J. Biol. Chem. 264, 12,800–12,804.

    CAS  Google Scholar 

  • Lovinger D. M., Akers R. F., Nelson R. B., Barnes C. A., McNaughton B. L., and Routtenberg A. (1985) A selective increase in phosphorylation of protein F1, a protien kinase C substrate, directly related to three day growth of long term synaptic enhancement.Brain Res. 343, 137–143.

    PubMed  CAS  Google Scholar 

  • Lu P. J. and Chen C. S. (1997) Selective recognition of phosphatidylinositol 3,4,5-trisphosphate by a synthetic peptide.J. Biol. Chem. 272, 466–472.

    PubMed  CAS  Google Scholar 

  • Luo Y. and Vallano M. L. (1995), Arachidonic acid, but not sodium nitroprusside, stimulates presynaptic protein kinase C and phosphorylation of GAP-43 in rat hippocampal slices and synaptosomes.J. Neurochem. 64, 1808–1818.

    PubMed  CAS  Google Scholar 

  • Lynch G., Larson J., Kelso S., Barrionuevo G., and Schottler F. (1983) Intracellular injections of EGTA block induction of hippocampal long-term potentiation.Nature 305, 719–721.

    PubMed  CAS  Google Scholar 

  • Madeira M. D. and Paula-Barbosa M. M. (1993) Reorganization of mossy fiber synapses in male and female hypothyroid rats: a stereological study.J. Comp. Neurol. 337, 334–352.

    PubMed  CAS  Google Scholar 

  • Madison D. V., Malenka R. C., and Nicoll R. A. (1991) Mechanisms underlying long-term potentiation of synaptic transmission.Ann. Rev. Neurosci. 14, 379–397.

    PubMed  CAS  Google Scholar 

  • Mahoney C. W., Pak J. H., and Huang K. P. (1996) Nitric oxide modification of rat brain neurogranin. Identification of the cysteine residues involved in intramolecular disulfide bridge formation using site-directed mutagenesis.J. Biol. Chem. 271, 28,798–28,804.

    CAS  Google Scholar 

  • Malenka R. C., Kauer J. A., Zucker R. J., and Nicoll R. A. (1988) Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission.Science 242, 81–84.

    PubMed  CAS  Google Scholar 

  • Malenka R. C. (1994) Synaptic plasticity in the hippocampus: LTP and LTD.Cell 78, 535–538.

    PubMed  CAS  Google Scholar 

  • Malinow R., Schulman H., and Tsien R. W. (1989) Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP.Science 245, 862–866.

    PubMed  CAS  Google Scholar 

  • Martinez de Arrieta C., Perez Jurado L., Bernal J., and Coloma A. (1997) Structure, organization, and chromosomal mapping of the human neurogranin gene (NRGN).Genomics 41, 243–249.

    PubMed  CAS  Google Scholar 

  • Martzen M. R. and Slemmon J. R. (1995) The dendritic peptide neurogranin can regulate a calmodulindependent target.J. Neurochem. 64, 92–100.

    PubMed  CAS  Google Scholar 

  • Masure H. R., Alexander K. A., Wakim B. T., and Storm D. R. (1986) Physicochemical and hydrodynamic characterization of P-57, a neurospecific calmodulin binding protein.Biochemistry 25, 7553–7560.

    PubMed  CAS  Google Scholar 

  • Mayford M., Wang J., Kandel E. R., and O'Dell T. J. (1995) CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP.Cell 81, 891–904.

    PubMed  CAS  Google Scholar 

  • Meberg P. J., Barnes C. A., McNaughton B. L., and Routtenberg A. (1993) Protein kinase C and F1/GAP-43 gene expression in hippocampus inversely related to synaptic enhancement lasting 3 days.Proc. Natl. Acad. Sci. USA 90, 12,050–12,054.

    CAS  Google Scholar 

  • Mertsalov I. B., Gundelfinger E., and Tsetlin V. I. (1996) Cloning cDNA for human neurogranin.Bioorganicheskaia Khimiia 22, 366–369.

    PubMed  CAS  Google Scholar 

  • Meyer R. L., Miotke J. A., and Benowitz L. I. (1994) Injury induced expression of growth-associated protein-43 in adult mouse retinal ganglion cells in vitro.Neuroscience 63, 591–602.

    PubMed  CAS  Google Scholar 

  • Meyer T., Hanson P. I., Stryer L., and Schulman H. (1992) Calmodulin trapping by calciumcalmodulin-dependent protein kinase.Science 256, 1199–1202.

    PubMed  CAS  Google Scholar 

  • Moriarty T. M., Padrell E., Carty D. J., Omri G., Landau E. M., and Iyengar R. (1990). Go protein as signal transducer in the pertussis toxin-sensitive phosphatidylinositol pathway.Nature 343, 79–82.

    PubMed  CAS  Google Scholar 

  • Moya K. L., Benowitz L. I., Jhaveri S., and Schneider G. E. (1988) Changes in rapidly trnasported proteins in developing hamster retinofugal axons.J. Neurosci. 8, 4445–4454.

    PubMed  CAS  Google Scholar 

  • Mulkey R. M., Endo S., Shenolikar S., and Malenka R. C. (1994) Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal longterm depression.Nature 369, 486–488.

    PubMed  CAS  Google Scholar 

  • Nakanishi S. (1992) Molecular diversity of glutamate receptors and implications for brain function.Science 258, 597–603.

    PubMed  CAS  Google Scholar 

  • Neel V. A. and Young M. W. (1994) Igloo, a GAP-43-related gene expressed in the developing nervous system ofDrosophila.Development 120, 2235–2243.

    PubMed  CAS  Google Scholar 

  • Neuner-Jehle M., Rhyner T. A., and Borbely A. A. (1995) Sleep deprivation differentially alters the mRNA and protien levels of neurogranin in rat brian.Brain Res. 685, 143–153.

    PubMed  CAS  Google Scholar 

  • Neuner-Jehle M., Denizot J. P., and Mallet J. (1996) Neurogranin is locally concentrated in rat cortical and hippocampal neurons.Brain Res. 733, 149–154.

    PubMed  CAS  Google Scholar 

  • Neve R. L., Perrone-Bizzozero N. I., Finklestein S., Zwiers H., Bird E., Kurnit D. M., and Benowitz L. I. (1987) The neuronal growth-associated protein GAP-43 (B-50, F1): neuronal specificity, developmental regulation and regional distribution of the human and rat mRNAs.Brain Res. 388, 177–183.

    PubMed  CAS  Google Scholar 

  • Ng S. C., de la Monte S. M., Conboy G. L., Karns L. R, and Fishman M. C. (1988) Cloning of human GAP-43: growth association and ischemic resurgence.Neuron 1, 133–139.

    PubMed  CAS  Google Scholar 

  • Nielander H. B., De Groen P. C., Eggen B. J., Schrama L. H., Gispen W. H., and Schotman P. (1993) Structure of the human gene for the neural phosphoprotein B-50 (GAP-43).Brain Res. Mol. Brain Res. 19, 293–302.

    PubMed  CAS  Google Scholar 

  • Nishizuka Y. (1988) The molecular heterogeneity of protein kinase C and its implications for cellular regulation.Nature 334, 661–665.

    PubMed  CAS  Google Scholar 

  • Nishizuka Y. (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C.Science 258, 607–614.

    PubMed  CAS  Google Scholar 

  • Pasinelli P., Ramakers G. M., Urban I. J., Hens J. J., Oestreicher A. B., De Graan P. N., and Gispen W. H. (1995). Long-term potentiation and synaptic protein phosphorylation.Behav. Brain Res. 66, 53–59.

    PubMed  CAS  Google Scholar 

  • Paudel H. K., Zwiers H., and Wang J. H. (1993) Phosphorylase kinase phosphorylates the calmodulin-binding regulatory regions of neuronal tissue-specific proteins B-50 (GAP-43) and neurogranin.J. Biol. Chem. 268, 6207–6213.

    PubMed  CAS  Google Scholar 

  • Perrone-Bizzozero N., Weiner D., Hauser G., and Benowitz L. I. (1988) Extraction of major acidic Ca2+ dependent phosphoproteins from synaptic membranes.J. Neurosci. Res. 20, 346–350.

    PubMed  CAS  Google Scholar 

  • Petcoff D. W. and Platt J. E. (1992). Inhibition of protein kinase C antagonizes in vitro tadpole tail fin regression induced by thyroxine.Gen. Compar. Endocrinol. 87, 208–213.

    CAS  Google Scholar 

  • Petrova T. V., Takagi T., and Cox J. A. (1996) Phosphorylation of the IQ domain regulates the interaction between Ca2+-vector protein and its target in Amphioxus.J. Biol. Chem. 271, 26,646–26,652.

    CAS  Google Scholar 

  • Piosik P. A., van Groenigen M., Ponne N. J., Bolhuis P. A., and Baas F. (1995) RC3/neurogranin structure and expression in the caprine brain in relation to congenital hypothyroidism.Mol. Brain Res. 29, 119–130.

    PubMed  CAS  Google Scholar 

  • Plantinga L. C., Verhaagen J., Edwards P. M., Hol E. M., Bar P. R., and Gispen W. H. (1993) The expression of B-50/GAP-43 in Schwann cells is upregulated in degenerating peripheral nerve stumps following nerve injury.Brain Res. 602, 69–76.

    PubMed  CAS  Google Scholar 

  • Powell C. M., Johnston D., and Sweatt J. D. (1994) Autonomously active protein kinase C in the maintenance phase of N-methyl-D-aspartate receptor-independent long term potentiation.J. Biol. Chem. 269, 27,958–27,963.

    CAS  Google Scholar 

  • Ramakers G. J., Oestreicher A. B., Wolters P. S., van Leeuwen F. W., De Graan P. N., and Gispen W. H. (1991) Developmental changes in B-50 (GAP-43) in primary cultures of cerebral cortex: B-50 immunolocalization, axonal elongation rate and growth cone morphology.Int. J. Develop. Neurosci. 9, 215–230.

    CAS  Google Scholar 

  • Ramakers G. J., McNamara R. K., Lenox R. H., and De Graan P. N. (1997) Changes in phosphorylation state of PKC substrates during LTP and LTD.Soc. Neurosci. Abstr. 23, in press.

  • Ramakers G. M., De Graan P. N., Urban I. J., Kraay D., Tang T., Pasinelli P., Oestreicher A. B., and Gispen W. H. (1995) Temporal differences in the phosphorylation state of pre- and postsynaptic protein kinase C substrates B-50/GAP-43 and neurogranin during long-term potentiation.J. Biol. Chem. 270, 13,892–13,898.

    CAS  Google Scholar 

  • Ramakers G. M., Pasinelli P., Hens J. J., Gispen W. H., and De Graan P. N. (1997) Protein kinase C in synaptic plasticity: changes in the in situ phosphorylation state of identified pre- and postsynaptic substrates.Prog. Neuropsychopharmacol. Biol. Psychiatry 21, 455–486.

    PubMed  CAS  Google Scholar 

  • Rami A., Patel A. J., and Rabie A. (1986) Thyroid hormone and development of the rat hippocampus: morphological alterations in granule and pyramidal cells.Neuroscience 19, 1217–1226.

    PubMed  CAS  Google Scholar 

  • Rami A. and Rabie A. (1990) Delayed synapto-genesis in the dentate gyrus of the thyroid-deficient developing rat.Dev. Neurosci. 12, 398–405.

    PubMed  CAS  Google Scholar 

  • Represa A., Deloulme J. C., Sensenbrenner M., Ben-Ari Y., and Baudier J. (1990) Neurogranin: immunocytochemical localization of a brain-specific protein kinase C substrate.J. Neurosci. 10, 3782–3792.

    PubMed  CAS  Google Scholar 

  • Rhyner T. A., Borbely A. A., and Mallet J. (1990) Molecular cloning of forebrain mRNAs which are modulated by sleep deprivation.Eur. J. Neurosci. 2, 1063–1073.

    PubMed  Google Scholar 

  • Rizzuto R., Bastianutto C., Brini M., Murgia M., and Pozzan T. (1994) Mitochondrial Ca2+ homeostasis in intact cells.J. Cell Biol. 126, 1183–1194.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Sanchez P., Tejero-Diez P., and Diez-Guerra F. J. (1997) Glutamate stimulates neurogranin phosphorylation in cultured rat hippocampal neurons.Neurosci. Lett. 221, 137–140.

    PubMed  CAS  Google Scholar 

  • Ruiz-Marcos A., Cartagena Abella P., Garcia Garcia A., Escobar del Rey F., and Morreale de Escobar G. (1988) Rapid effects of adult-onset hypothyroidism on dendritic spines of pyramidal cells of the rat cerebral cortex.Exper. Brain Res. 73, 583–588.

    CAS  Google Scholar 

  • Sangameswaran L., Hempstead J., Morgan J. I., Basi G. S., Jacobson R. D., Virag I., Schilling J., and Skene J. H. (1987) Molecular cloning of a neuron-specific transcript and its regulation Primary structure and transcriptional regulation of GAP-43, a protein associated with nerve growth.Cell 49, 785–791.

    Google Scholar 

  • Sangameswaran L., Hempstead J., and Morgan J. I. (1989) Molecular cloning of a neuron-specific transcript and its regulation during normal and aberrant cerebellar development.Proc. Natl. Acad. Sci. USA 86, 5651–5655.

    PubMed  CAS  Google Scholar 

  • Sangameswaran L. and Morgan J. I. (1993) Structure and regulation of the gene encoding the neuron-specific protein PEP-19.Mol. Brain Res. 19, 62–68.

    PubMed  CAS  Google Scholar 

  • Sato T., Xiao D. M., Li H., Huang F. L., and Huang K. P. (1995) Structure and regulation of the gene encoding the neuron-specific protein kinase C substrate neurogranin (RC3 protein).J. Biol. Chem. 270, 10,314–10,322.

    CAS  Google Scholar 

  • Schaechter J. D. and Benowitz L. I. (1993) Activation of protein kinase C by arachidonic acid selectively enhances the phosphorylation of GAP-43 in nerve terminal membranes.J. Neurosci. 13, 4361–4371.

    PubMed  CAS  Google Scholar 

  • Schuman E. M. and Madison D. V. (1994) Locally distributed synaptic potentiation in the hippocampus.Science 263, 532–536.

    PubMed  CAS  Google Scholar 

  • Schwegler H., Crusio W. E., Lipp H. P., Brust I., and Mueller G. G. (1991) Early postnatal hyperthyroidism alters hippocampal circuitry and improves radial-maze learning in adult mice.J. Neurosci. 11, 2102–2106.

    PubMed  CAS  Google Scholar 

  • Seki K., Chen H. C., and Huang K. P. (1995) Dephosphorylation of protein kinase C substrates, neurogranin, neuromodulin, and MARCKS, by calcineurin and protein phosphatases 1 and 2A.Arch. Biochem. Biophys. 316, 673–679.

    PubMed  CAS  Google Scholar 

  • Shain D. H., Haile D. T., Verrastro T. A., and Zuber M. X. (1995) Cloning and embryonic expression ofXenopus laevis GAP-43 (XGAP-43).Brain Res. 697, 241–246.

    PubMed  CAS  Google Scholar 

  • Sharma R. K. and Wang J. H. (1986) Purification and characterization of bovine lung calmodulin dependent cyclic nucleotide phosphodiesterase.J. Biol. Chem. 261, 14,160–14,166.

    CAS  Google Scholar 

  • Sheu F. S., Mahoney C. W., Seki K., and Huang K. P. (1996) Nitric oxide modification of rat brain neurogranin affects its phosphorylation by protein kinase C and affinity for calmodulin.J. Biol. Chem. 271, 22,407–22,413.

    CAS  Google Scholar 

  • Silva A. J., Paylor R., Wehner J. M., and Tonegawa S. (1992) Impaired spatial learning in a-calcium-calmodulin kinase II mutant mice.Science 257, 206–211.

    PubMed  CAS  Google Scholar 

  • Skene J. H. and Virag I. (1989) Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43.J. Cell. Biol. 108, 613–624.

    PubMed  CAS  Google Scholar 

  • Skene J. H. P. (1989) Axonal growth-associated proteins.Ann. Rev. Neurosci. 12, 127–156.

    PubMed  CAS  Google Scholar 

  • Slemmon J. R., Morgan J. I., Fullerton S. M., Danho W., Hilbush B. S., and Wengenack T. M. (1996) Camstatins are peptide antagonists of calmodulin based upon a conserved structural motif in PEP-19, neurogranin, and neuromodulin.J. Biol. Chem. 271, 15,911–15,917.

    CAS  Google Scholar 

  • Slemmon J. R. and Flood D. G. (1992) Profiling of endogenous brain peptides and small proteins: methodology, computer-assisted analysis, and application to aging and lesion models.Neurobiol. Aging 13, 649–660.

    PubMed  CAS  Google Scholar 

  • Slemmon J. R. and Martzen M. R. (1994) neuromodulin (GAP-43) can regulate a calmodulin-dependent target in vitro.Biochemistry 33, 5653–5660.

    PubMed  CAS  Google Scholar 

  • Sposi N. M., Bottero L., Cossu G., Russo G., Testa U., and Peschle C. (1989) Expression of protein kinase C genes during ontogenic development of the central nervous system.Mol. Cell. Biol. 9, 2284–2288.

    PubMed  CAS  Google Scholar 

  • Strittmatter S. M., Valenzuela D., Kennedy T. E., Neer E. J., and Fishman M. C. (1990) G0 is a major growth cone protein subject to regulation by GAP-43.Nature 344, 836–841.

    PubMed  CAS  Google Scholar 

  • Strittmatter S. M., Valenzuela D., Sudo Y., Linder M. E., and Fishman M. C. (1991) An intracellular guanine nucleotide release protein for G0. GAP-43 stimulates isolated alpha subunits by a novel mechanism.J. Biol. Chem. 266, 22,465–22,471.

    CAS  Google Scholar 

  • Strittmatter S. M., Vartanian T., and Fishman M. C. (1992) GAP-43 as a plasticity protein in neuronal form and repair.J. Neurobiol. 23, 507–520.

    PubMed  CAS  Google Scholar 

  • Strittmatter S. M., Cannon S. C., Ross E. M., Higashijima T., and Fishman M. C. (1993) GAP-43 augments G protein-coupled receptor transduction in Xenopus laevis oocytes.Proc. Natl. Acad. Sci. USA 90, 5327–5331.

    PubMed  CAS  Google Scholar 

  • Strittmatter S. M., Igarashi M., and Fishman M. C. (1994) GAP-43 amino terminal peptides modulate growth cone morphology and neurite outgrowth.J. Neurosci. 14, 5503–5513.

    PubMed  CAS  Google Scholar 

  • Strittmatter S. M., Valenzuela D., and Fishman M. C. (1994b) An amino-terminal domain of the growth-associated protein GAP-43 mediates its effects on filopodial formation and cell spreading.J. Cell Sci. 107, 195–204.

    PubMed  CAS  Google Scholar 

  • Strittmatter S. M., Fankhauser C., Huang P. L., Mashimo H., and Fishman M. C. (1995) Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43.Cell 80, 445–452.

    PubMed  CAS  Google Scholar 

  • Suzuki T. (1994) Protein kinases involved in the expression of long-term potentiation. [Review].Int. J. Biochem. 26, 735–744.

    PubMed  CAS  Google Scholar 

  • Urbauer J. L., Short J. H., Dow L. K., and Wand A. J. (1995) Structural analysis of a novel interaction by calmodulin: high-affinity binding of a peptide in the absence of calcium.Biochemistry 34, 8099–8109.

    PubMed  CAS  Google Scholar 

  • Uylings H. B. M., van Eden C. G., Parnavelas J. G., and Kalsbeek A. (1990) The prenatal and postnatal development of rat cerebral cortex, in:The Cerebral Cortex of the Rat (Kolb B. and Tees R. C., eds.), MIT Press, Cambridge, MA, pp. 35–76.

    Google Scholar 

  • Vanselow J., Grabczyk E., Ping J., Baetscher M., Teng S., and Fishman, M. C. (1994) GAP-43 transgenic mice: dispersed genomic sequences confer a GAP-43-like expression pattern during development and regeneration.J. Neurosci. 14, 499–510.

    PubMed  CAS  Google Scholar 

  • Wakim B. T., Alexander K. A., Masure H. R., Cimler B. M., Storm D. R., and Walsh K. A. (1987) Amino acid sequence of P-57, a neurospecific calmodulin-binding protein.Biochemistry 26, 7466–7470.

    PubMed  CAS  Google Scholar 

  • Wang J. H. and Kelly P. T. (1995) Postsynaptic injection of CA2+/CaM induces synaptic potentiation requiring CaMKII and PKC activity.Neuron 15, 443–452.

    PubMed  Google Scholar 

  • Watson J. B., Battenberg E. F., Wong K. K., Bloom F. E., and Sutcliffe J. G. (1990) Subtractive cDNA cloning of RC3, a rodent cortex-enriched mRNA encoding a novel 78 residue protein.J. Neurosci. Res. 26, 397–408.

    PubMed  CAS  Google Scholar 

  • Watson J. B., Sutcliffe J. G., and Fisher R. S. (1992) Localization of the protein kinase C phosphorylation/calmodulin-binding substrate RC3 in dendritic spines of neostriatal neurons.Proc. Natl. Acad. Sci. USA 89, 8581–8585.

    PubMed  CAS  Google Scholar 

  • Watson J. B., Szijan I., and Coulter P. M., 2nd. (1994) Localization of RC3 (neurogranin) in rat brain subcellular fractions.Mol. Brain Res. 27, 323–328.

    PubMed  CAS  Google Scholar 

  • Watson J. B., Margulies J. E., Coulter P. M., 2nd, Gerendasy D. D., Sutcliffe J. G., and Cohen R. W. (1996) Functional studies of single-site variants in the calmodulin-binding domain of RC3/neurogranin in Xenopus oocytes.Neurosci. Lett. 219, 183–186.

    PubMed  CAS  Google Scholar 

  • Wertz S. L., Savino Y., and Cafiso D. S. (1996) Solution and membrane bound structure of a peptide derived from the protein kinase C substrate domain of neuromodulin.Biochemistry 35, 11,104–11,112.

    CAS  Google Scholar 

  • Woolf C. J., Reynolds M. L., Molander C., O'Brien C., Lindsay R. M., and Benowitz L. I. (1990) The growth-associated protein GAP-43 appears in dorsal root ganglion cells and in the dorsal horn of the rat spinal cord following peripheral nerve injury.Neuroscience 34, 465–478.

    PubMed  CAS  Google Scholar 

  • Yoshida Y., Huang F. L., Nakabayashi H., and Huang K. P. (1988) Tissue distribution and developmental expression of protein kinase C isozymes.J. Biol. Chem. 263, 9868–9873.

    PubMed  CAS  Google Scholar 

  • Zhang M., Vogel H. J., and Zwiers H. (1994) Nuclear magnetic resonance studies of the structure of B50/neuromodulin and its interaction with calmodulin.Biochem. Cell Biol. 72, 109–116.

    PubMed  CAS  Google Scholar 

  • Ziai M. R., Sangameswaran L., Hempstead J. L., Danho W., and Morgan J. I. (1988) An immunochemical analysis of the distribution of a brain-specific polypeptide, PEP-19.J. Neurochem. 51, 1771–1776.

    PubMed  CAS  Google Scholar 

  • Ziai R., Pan Y. C., Hulmes J. D., Sangameswaran L., and Morgan J. I. (1986) Isolation, sequence, and developmental profile of a brain-specific polypeptide, PEP-19.Proc. Natl. Acad. Sci. USA 83, 8420–8423.

    PubMed  CAS  Google Scholar 

  • Zuber M. X., Strittmatter S. M., and Fishman M. C. (1989) A membrane-targeting signal in the amino terminus of the neuronal protein GAP-43.Nature 341, 345–348.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerendasy, D.D., Gregor Sutcliffe, J. RC3/neurogranin, a postsynaptic calpacitin for setting the response threshold to calcium influxes. Mol Neurobiol 15, 131–163 (1997). https://doi.org/10.1007/BF02740632

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02740632

Index Entries

Navigation