Skip to main content
Log in

Expression and regulation of transforming growth factor β1 in cultured normal and neoplastic rat pituitary cells

  • Basic Research
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Pituitary prolactin (PRL) cell gene expression and proliferation are regulated by various hormones and growth factors. Transforming growth factor beta (TGFβ) and basic fibroblast growth factor (bFGF) have been implicated in the regulation of anterior pituitary function. To study the roles of TGFβ and bFGF in anterior pituitary cell function, we analyzed normal and neoplastic pituitary cells in serum-free media. The various isoforms of TGFβ and TGFβ receptor types I, II, and III were also analyzed by reverse transcriptionpolymerase chain reaction (RT-PCR) in pituitary cells.

Transforming growth factor beta 1 (TGFβ1) stimulated PRL expression and PRL cell proliferation in normal pituitary. TGFβ1 stimulated PRL expression, but inhibited proliferation in the growth hormone (GH) and PRL-producing GH3 cells. Estradiol 17β (E2) and bFGF stimulated PRL gene expression in normal pituitary and GH3 cells, whereas E2 inhibited and bFGF stimulated TGFβ1 mRNA levels in normal pituitary PRL cells, but not in GH3 cells. Both normal pituitary and GH3 cells expressed the mRNAs for TGFβ1, TGFβ2, and TGFβ3 isoforms and for TGFβ receptors I, II, and III. These results indicate that there is a relative loss of regulatory control by growth factors in neoplastic GH3 cells compared to normal pituitary PRL cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Furth J, Ueda G, Clifton KH. The pathophysiology of pituitaries and their tumors: methodological advances. Methods Cancer Res 10:210–277, 1973.

    Google Scholar 

  2. Murdoch GH, Potter E, Nicolaisen AK, Evans RM, Rosenfeld MG. Epidermal growth factor rapidly stimulates prolactin gene transcription. Nature 300:192–194, 1982.

    Article  PubMed  CAS  Google Scholar 

  3. Castrillo J-L, Bodner M, Karin M. Purification of growth hormone specific transcription factor GHF-1, containing homeobox. Science 243:814–817, 1989.

    Article  PubMed  CAS  Google Scholar 

  4. Simmons PM, Voss JW, Ingraham HA, Hollowy JM, Groide RS, Rosenfled MG, Swanson LW. Pituitary cell phenotype involve cell specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Gen Dev 4:695–711, 1990.

    Article  CAS  Google Scholar 

  5. Zhang K, Kulig E, Jin L, Lloyd RV. Effects of estrogen and epidermal growth factor on prolactin and pit-1 mRNA in GH3 cells. Proc Soc Expt Biol Med 202:193–200, 1993.

    CAS  Google Scholar 

  6. Wiklund J, Wertz N, Gorski J. A comparison of estrogen effects on uterine and pituitary growth and prolactin synthesis in F344 and Holtzman rats. Endocrinology 109:1700–1707, 1981.

    PubMed  CAS  Google Scholar 

  7. Lloyd RV. Estrogen-induced hyperplasia and neoplasia in the rat anterior pituitary gland: an immunohistochemical study. Am J Pathol 113:198–206, 1983.

    PubMed  CAS  Google Scholar 

  8. Lloyd RV, Cano M, Landefeld TD. The effects of estrogens on tumor growth and on prolactin and growth hormone in mRNA expression in rat pituitary tissues. Am J Pathol 133, 397–406, 1988.

    PubMed  CAS  Google Scholar 

  9. Delidow BC, Billis WM, Agarwal P, White BA. Inhibition of prolactin, gene transcription by transforming growth factor-β in GH3 cells. Mol Endocrinol 5:1716–1722, 1991.

    PubMed  CAS  Google Scholar 

  10. Mueller SG, Kudlow JE. Transforming growth factor-β (TGFβ) inhibits TGFα expression in bovine anterior pituitary-derived cells. Mol Endocrinol 5:1439–1446, 1991.

    PubMed  CAS  Google Scholar 

  11. Albaladejo V, Fei ZL, Nicholas B, Joly-Pharaboz MO, Avallet O, Vigier M, Andre J. Possible involvement of transforming growth factor-β in the inhibition of rat pituitary tumor growth by estradiol. J Steroid Biochem Mol Biol 41:125–134, 1992.

    Article  PubMed  CAS  Google Scholar 

  12. Ramsdell JS. Transforming growth factor-α and β are potent and effective inhibitors of GH4 pituitary cell proliferation. Endocrinology 128:1981–1990, 1991.

    PubMed  CAS  Google Scholar 

  13. Sarkar DK, Kim KH, Minami S. Transforming growth factor-β1 messenger RNA and protein expression in the pituitary gland: its action on prolactin secretion and lactotropic growth. Mol Endocrinol 6:1825–1833, 1992.

    Article  PubMed  CAS  Google Scholar 

  14. Burns G, Sarkar DK. Transforming growth factor-β1-like immunoreactivity in the pituitary gland of the rat: effect of estrogen. Endocrinology 133:1444–1449, 1993.

    Article  PubMed  CAS  Google Scholar 

  15. Sporn MB, Roberts AB, Wakefield LM, de Crombrugghe B. Some recent advances in the chemistry and biology of transforming growth factor-beta. J Cell Biol 105:1039–1045, 1987.

    Article  PubMed  CAS  Google Scholar 

  16. Moses HL, Yang EY, Pietenpol JA. TGF-β stimulation and inhibition of cell proliferation: new mechanistic insights. Cell 63:245–247, 1990.

    Article  PubMed  CAS  Google Scholar 

  17. Knabbe C, Lippman ME, Wakefield LM, Flanders KC, Kasid A, Derynck R, Dickson RB. Evidence that transforming growth factor-beta is a hormonally regulated negative growth factor in human breast cancer cells. Cell 48:417–428, 1987.

    Article  PubMed  CAS  Google Scholar 

  18. Baird A, Bohlen P. Fibroblast growth factors. In: Sporn MB, Roberts AB, eds. Peptide growth factors. New York: Springer-Verlag, 1990; 369–417.

    Google Scholar 

  19. Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G. Structural characterization and biological functions of fibroblast growth factor. Endocrine Rev 8:95–114, 1987.

    Article  CAS  Google Scholar 

  20. Larson GH, Koos RD, Sortino MA, Wise PM. Acute effect of basic fibroblast growth factor on secretion of prolactin as assessed by the reverse hemolytic plaque assay. Endocrinology 126:927–932, 1990.

    PubMed  CAS  Google Scholar 

  21. Schecter J, Weiner R. Changes in basic fibroblast growth factor coincident with estradiol-induced hyperplasia of the anterior pituitaries of Fischer 344 and Sprague-Dawley rats. Endocrinology 129:2400–2408, 1991.

    Article  Google Scholar 

  22. Porter TE, Wiles CD, Frawley LS. Stimulation of lactotrope differentiation in vitro by fibroblast growth factor. Endocrinology 134:164–168, 1994.

    Article  PubMed  CAS  Google Scholar 

  23. Gonzalez AM, Logan A, Ying W, Lappri DA, Berry M, Baird A. Fibroblast growth factor in the hypothalamic-pituitary axis: differential expression of fibroblast growth factor-2 and a high affinity receptor. Endocrinology 134: 2289–2297, 1994.

    Article  PubMed  CAS  Google Scholar 

  24. Tashijian AH Jr, Yasumura Y, Levine L, Sato GH, Parker ML. Establishment of clonal strains of rat pituitary tumor cells that secrete growth hormone. Endocrinology 82:342–352, 1968.

    Google Scholar 

  25. Lloyd RV, Coleman K, Fields K, Nath V. Analysis of prolactin and growth hormone production in hyperplastic and neoplastic rat pituitary tissue by the hemolytic plaque assay. Cancer Res 47:1087–1092, 1987.

    PubMed  CAS  Google Scholar 

  26. Lloyd RV, Landefeld TD, Maslar I, Frohman LA. Diethylstilbestrol inhibits tumor growth and prolactin production in rat pituitary tumors. Am J Pathol 118:379–386, 1985.

    PubMed  CAS  Google Scholar 

  27. Cooke NE, Coit D, Weiner RI, Baxter JD, Martial JA. Structure of clonal DNA complementary to rat prolactin messenger RNA. J Biol Chem 255:6502–6510, 1980.

    PubMed  CAS  Google Scholar 

  28. Seeburg PH, Shine J, Martial JA, Baxter JD, Goodman HM. Nucleotide sequence and amplification in bacterial of structure gene for rat growth hormone. Nature 270:486–494, 1977.

    Article  PubMed  CAS  Google Scholar 

  29. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1989.

    Google Scholar 

  30. Qian SW, Kondaiah P, Roberts AB, Sporn MB. cDNA cloning by PCR of rat transforming growth factor beta 1. Nucleic Acids Res 18:3059, 1990.

    Article  PubMed  CAS  Google Scholar 

  31. Miller DA, Lee A, Pelton RW, Chen EY, Moses HL, Derynck R. Murine transforming growth factor-beta 2 cDNA sequence and expression in adult tissues and embryos. Mol Endocrinol 3:1108–1114, 1989.

    PubMed  CAS  Google Scholar 

  32. Miller DA, Lee A, Matsui Y, Chen EY, Moses HL, Derynck R. Complementary DNA cloning of the murine transforming growth factor-beta-3 (TGF-beta-3) precursor and the comparative expression of TGF-beta-3 and TGF-beta-1 messenger RNA in murine embryos and adult tissues. Mol Endocrinol 3:1926–1934, 1989.

    PubMed  CAS  Google Scholar 

  33. Ebner R, Chen H, Shum L, Lawler S, Lee AL, Zioncheck TF, Lopez AR, Derynck R. Cloning of a type ITGF-beta receptor and its effect on TFG-beta binding to the type II receptor. Science 260:1334–1348, 1993.

    Article  Google Scholar 

  34. Choi ME, Kim EG, Huang Q, Ballermann BJ. Rat mesengial cell hypertrophy in response to transforming growth factor-beta 1. Kidney Int 44:948–958, 1993.

    Article  PubMed  CAS  Google Scholar 

  35. Wang, X-F, Lin HY, Ng-Eaton E, Downward J, Lodish HF, Weinberg RA. Expression cloning and characterization of the TFG-beta type III receptor. Cell 67:797–805, 1991.

    Article  PubMed  CAS  Google Scholar 

  36. Fields K, Kulig E, Lloyd RV. Detection of prolactin messenger RNA in mammary and other normal and neoplastic tissue by polymerase chain reaction. Lab Invest 68:354–360, 1993.

    PubMed  CAS  Google Scholar 

  37. Gerdes J, Becker MH, Key G, Cattoretti G. Immunohistochemical detection of tumour growth fraction (Ki-67 antigen) in formalin-fixed and routinely processed tissues. J Pathol 168:85, 86, 1992.

    Article  PubMed  CAS  Google Scholar 

  38. Waseem NH, Lane DP. Monoclonal antibody analysis of the proliferating cell nuclear antigen structural conservation and the detection of a nucleolar form. J Cell Sci 96:121–129, 1990.

    PubMed  CAS  Google Scholar 

  39. Attisano L, Wrana JL, Lopez-Casillas, F, Massague J. TGF-β receptors and actions. Biochem Biophys Acta 1222:71–80, 1994.

    Article  PubMed  CAS  Google Scholar 

  40. Freiss H, Yamanaka Y, Buchler M, Berger HG, Kobrin MS, Baldwin RL, Korc M. Enhanced expression of the type II transforming growth factor β receptor in human pancreatic cancer cells without alteration of type III receptor expression. Cancer Res 53:2704–2707, 1993.

    Google Scholar 

  41. Park K, Kim S-J, Bang Y-J, Park J-G, Kim NK, Roberts AB, Sporn MB. Genetic changes in the transforming growth factor β (TGFβ) type II receptor gene in human gastric cancer cells: correlation with sensitivity to growth inhibition by TGFβ. Proc Natl Acad Sci USA 91:8772–8776, 1994.

    Article  PubMed  CAS  Google Scholar 

  42. Cheifetz S, Ling N, Guillemin R, Massague J. A surface component on GH3 pituitary cells that recognizes transforming growth factor-β, activin and inhibin. J Biol Chem 263: 17,225–17,228, 1988.

    CAS  Google Scholar 

  43. Yamashita H, Okadome T, Franzen P, ten Dijke P, Heldin C-H, Miyazono K. A rat pituitary tumor cell line (GH3) expresses type I and type II receptors and other cell surface binding proteins for transforming growth factor-β. J Biol Chem 270:770–774, 1995.

    Article  PubMed  CAS  Google Scholar 

  44. Moustakas A, Takumi T, Lin HY, Lodish HF. GH3 pituitary tumor cells contain heteromeric type I and type II receptor complexes for transforming growth factor-β and activin-A. J Biol Chem 270:765–769, 1995.

    Article  PubMed  CAS  Google Scholar 

  45. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowsica E, Kinzler KW, Vogelstein B, Brattain M, Wilson KV. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338, 1994.

    Article  Google Scholar 

  46. Hunter T, Pines J. Cyclins and cancer II: cyclin D and CDK inhibitors come of age. Cell 79:573–582, 1994.

    Article  PubMed  CAS  Google Scholar 

  47. Polyak K, Lee M-H, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massagne J. Cloning of P27kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78:59–66, 1994.

    Article  PubMed  CAS  Google Scholar 

  48. Polyak K, Kato J-Y, Solomon MJ, Sherr CJ, Massagne J, Roberts JM, Koff A. P27kip1, a cyclin-cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Dev 8:9–22, 1994.

    Article  PubMed  CAS  Google Scholar 

  49. Toyoshima H, Hunter T. p27, a novel inhibitor of G1 cyclin-cdk protein kinase activity, is related to p21. Cell 78:67–74, 1994.

    Article  PubMed  CAS  Google Scholar 

  50. Hannon GJ, Beach D. p15INK4B is a potential effector of TGFβ-induced cell cycle arrest. Nature 371:257–261, 1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, X., Jin, L. & Lloyd, R.V. Expression and regulation of transforming growth factor β1 in cultured normal and neoplastic rat pituitary cells. Endocr Pathol 7, 77–90 (1996). https://doi.org/10.1007/BF02739918

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02739918

Key Words

Navigation