Skip to main content
Log in

Direct monitoring of dopamine and 5-HT release in substantia nigra and ventral tegmental area in vitro

  • Original Paper
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Fast-scan cyclic voltammetry with carbon fibre microelectrodes was used to detect endogenous dopamine (DA) and 5-hydroxytryptamine (5-HT) release from three distinct regions of guinea-pig mid-brain in vitro : rostral and caudal substantia nigra (SN) and the ventral tegmental area (VTA). Previous electrophysiological studies have demonstrated that cells of the caudal SN and the VTA have similar characteristics, whereas cells in the rostral SN have distinctly different properties. In the present study, we confirmed that each region has tyrosine hydroxylase-positive neurons and determined, using high-performance liquid chromatography, that DA levels were similar in rostral and caudal SN, but lower in SN than in VTA. In each region, application of veratrine, which was shown by intracellular recordings to have a reversible depolarising action, evoked a signal attributable to DA and distinguishable from that of 5-HT. Release signals were monitored every 250 ms with a spatial resolution of less than 50 μm. DA release was calcium-dependent and was not detectable in a catecholamine-poor area such as the cerebellum, or in mid-brain tissue pre-treated with reserpine. Within the normal mid-brain, the amount of DA released was correlated with tissue content in that it was higher in the VTA than in either region of SN. It is concluded that DA released from somato-dendritic parts of mid-brain neurons exhibits site-specific variation. This is the first report of direct monitoring of DA and 5-HT relase from these regions with in situ electrodes and demonstrates the utility of fast-scan cyclic voltammetry to investigate the mechanisms and possible non-classical functions of somato-dendritic DA release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams RN (1990) In vivo electrochemical measurements in the CNS. Prog Neurobiol 35:297–311

    Article  PubMed  CAS  Google Scholar 

  • Anton AH, Sayre DF (1962) A study of the factors affecting the aluminium oxide-trihydroxyindole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 138:360–375

    PubMed  CAS  Google Scholar 

  • Armstrong-James M, Fox K, Kruk ZL, Millar J (1981) Quantitative iontophoresis of catecholamines using multibarrel carbon fibre microelectrodes. J Neurosci Methods 4:385–406

    Article  PubMed  CAS  Google Scholar 

  • Bickford-Wimer P, Pang K, Rose G, Gerhardt GA (1991) Electrically-evoked release of norepinephrine in the rat cerebellum: an in vivo electrochemical and electrophysiological study. Brain Res 558:305–311

    Article  PubMed  CAS  Google Scholar 

  • Björklund A, Lindvall O (1975) Dopamine in dendrites of substantia nigra neurons: suggestions for a role in dendritic terminals. Brain Res 83:531–537

    Article  PubMed  Google Scholar 

  • Bull DR, Palij P, Sheehan MJ, Millar J, Stamford JA, Kruk ZL, Humphrey PPA (1990) Application of fast-scan cyclic voltammetry to measurement of electrically evoked dopamine overflow from brain slices in vitro. J Neurosci Methods 32:37–44

    Article  PubMed  CAS  Google Scholar 

  • Cameron DL, Williams JT (1993) Dopamine Dl receptors facilitate transmitter release. Nature 366:344–347

    Article  PubMed  CAS  Google Scholar 

  • Cheramy A, Leviel V, Glowinski J (1981) Dendritic release of dopamine in the substantia nigra. Nature 289:537–542

    Article  PubMed  CAS  Google Scholar 

  • Chesler M (1990) The regulation and modulation of pH in the nervous system. Prog Neurobiol 34:401–427

    Article  PubMed  CAS  Google Scholar 

  • Chiodo LA, Antelman SM, Caggiula AR, Lineberry CG (1980) Sensory stimuli alter the discharge rate of dopamine (DA) neurons: evidence for two functional types of DA cells in the substantia nigra. Brain Res 189:544–549

    Article  PubMed  CAS  Google Scholar 

  • Cuello AC (1982) Storage and release of amines, amino acids and peptides from dendrites. Prog Brain Res 55:205–224

    Article  PubMed  CAS  Google Scholar 

  • Cuello AC, Kelly JS (1977) Electron microscopic autoradiographic localization of [3H]dopamine in the dendrites of the dopaminergic neurones of the rat substantia nigra in vivo. Br J Pharmacol 59:P527–528

    Google Scholar 

  • Dray A, Davies J, Oakley NR, Tongroach P, Vellucci S (1976) The dorsal and medial raphe projections to the substantia nigra in rat: electrophysiological, biochemical and behavioural observations. Brain Res 151:431–442

    Article  Google Scholar 

  • Elverfors A, Nissbrandt H (1991) Reserpine-insensitive dopamine release in the substantia nigra? Brain Res 557:5–12

    Article  PubMed  CAS  Google Scholar 

  • Elverfors A, Jonason J, Jonason G, Leonsson G, Nissbrandt H (1992) Determination of release of endogenous dopamine from superfused substantia nigra slices. J Neurosci Method 45:209–215

    Article  CAS  Google Scholar 

  • Felice LJ, Felice JD, Kissinger PT (1978) Determination of catecholamines in rat brain parts by reverse-phase ion-pair liquid chromatography. J Neurochem 31:1461–1465

    Article  PubMed  CAS  Google Scholar 

  • Fibiger HC, Miller JJ (1977) An anatomical and electrophysiological investigation of the serotonergic projection from the dorsal raphe nucleus to the substantia nigra in the rat. Neuroscience 2:975–987

    Article  Google Scholar 

  • Geffen LB, Jessell TM, Cuello AC, Iversen LL (1976) Release of dopamine from dendrites in rat substantia nigra. Nature 260:258–260

    Article  PubMed  CAS  Google Scholar 

  • Greenfield SA (1985) The significance of dendritic release of transmitter and protein in the substantia nigra. Neurochem Int 7:887–901

    Article  CAS  PubMed  Google Scholar 

  • Greenfield SA, Grunewald RA, Foley P, Shaw SG (1983) Origin of various enzymes released from the substantia nigra and caudate nucleus: effects of 6-hydroxydopamine lesions of the nigro-striatal pathway. J Comp Neurol 214:87–92

    Article  PubMed  CAS  Google Scholar 

  • Groves PM, Wilson CJ, Young SJ, Rebec GV (1975) Self-inhibition by dopaminergic neurons. Science 190:522–529

    Article  PubMed  CAS  Google Scholar 

  • Harris NC, Webb C, Greenfield SA (1989) A possible pacemaker mechanism in pars compacta neurones of the guinea pig substantia nigra revealed by various ion channel blocking agents. Neuroscience 31:363–370

    Article  PubMed  CAS  Google Scholar 

  • Hery F, Soubrie P, Bourgoin S, Motastruc JL, Artaud F, Glowinski J (1980) Dopamine released from dendrites in the substantia nigra controls the nigral and striatal release of serotonin. Brain Res 193:143–151

    Article  PubMed  CAS  Google Scholar 

  • Hökfelt T, Fuxe K (1969) Cerebellar monoamine nerve terminals, a new type of afferent fibre to the cortex cerebelli. Exp Brain Res 9:63–72

    Article  PubMed  Google Scholar 

  • Johnson SW, North RA (1992) Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J Physiol (Lond) 450:455–468

    CAS  Google Scholar 

  • Jones SR, Mickelson GE, Collins LB, Kawagoe KT, Wightman RM (1994) Interference by pH and Ca2+ ions during measure- ments of catecholamine release in slices of rat amygdala with fast-scan cyclic voltammetry. J Neurosci Methods (in press)

  • Juraska JM, Wilson CJ, Groves PM (1977) The substantia nigra of the rat: a Golgi study. J Comp Neurol 172:585–600

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Duffy P (1991) A comparison of axonal and somatodendritic dopamine release using in vivo dialysis. J Neurochem 56:961–967

    Article  PubMed  CAS  Google Scholar 

  • Kennedy RT, Jones SR, Wightman RM (1992) Simultaneous measurement of oxygen and dopamine: coupling of oxygen consumption and neurotransmission. Neuroscience 47:603–612

    Article  PubMed  CAS  Google Scholar 

  • Kuhr W, Wightman RM (1986) Real-time measurement of dopamine release in rat brain. Brain Res 81:168–171

    Article  Google Scholar 

  • Llinás R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol (Lond) 305:171–195

    Google Scholar 

  • Llinás R, Greenfield SA, Jahnsen H (1984) Electrophysiology of pars compacta cells in the in vitro substantia nigra a possible mechanism for dendritic release. Brain Res 294:127–132

    Article  PubMed  Google Scholar 

  • Luparello TJ (1967) Stereotaxic atlas of the forebrain of the guinea pig. Karger, New York

    Google Scholar 

  • Mercer L, del Fiacco M, Cuello AC (1978) The smooth endoplasmic reticulum as a possible storage site for dendritic dopamine in substantia nigra neurones. Experientia 35:101–103

    Article  Google Scholar 

  • Millar J, Williams GV (1990) Fast differential ramp voltammetry: a new voltammetric technique designed specifically for use in neuronal tissue. J Electroanal Chem 282:33–49

    Article  CAS  Google Scholar 

  • Millar J, Stamford JA, Kruk ZL, Wightman RM (1985) Electrochemical, pharmacological and electrophysiological evidence of rapid dopamine release and removal in rat caudate nucleus following electrical stimulation of the median forebrain bundle. Eur J Pharmacol 109:341–348

    Article  PubMed  CAS  Google Scholar 

  • Murphy KPSJ, Greenfield SA (1992) Neuronal selectivity of ATPsensitive potassium channels in guinea-pig substantia nigra revealed by responses to anoxia. J Physiol (Lond) 453:167–183

    CAS  Google Scholar 

  • Nedergaard S, Greenfield SA (1992) Sub-populations of pars compacta neurons in the substantia nigra: the significance of qualitatively and quantitatively distinct conductances. Neuroscience 48:423–437

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard S, Bolam P, Greenfield SA (1988) Facilitation of a dendritic calcium conductance by 5-hydroxytryptamine in the substantia nigra. Nature 333:174–177

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard S, Flatman JA, Engberg I (1991) Excitation of substantia nigra pars compacta neurones by 5-hydroxytryptamine in vitro. Neuroreport 2:329–332

    Article  PubMed  CAS  Google Scholar 

  • Nicholson C, Rice ME (1988) Use of ion-selective microelectrodes and voltammetric microsensors to study the brain cell microenvironment. In: Boulton AA, Baker GB, Walz W (eds) Neuromethods, vol 9. The neuronal microenvironment. Humana Press, Clifton, N.J., pp 247–361

    Chapter  Google Scholar 

  • Nieoullon A, Cheramy A, Glowinski J (1977) Release of dopamine in vivo from cat substantia nigra. Nature 266:375–377

    Article  PubMed  CAS  Google Scholar 

  • O’Connor JJ, Kruk ZL (1991) Fast cyclic voltammetry can be used to measure stimulated endogenous 5-hydroxytrypamine release in untreated rat brain slices. J Neurosci Methods 38:25–33

    Article  PubMed  CAS  Google Scholar 

  • Parizek J, Hassler R, Bak IJ (1971) Light and electron microscopic autoradiography of substantia nigra of rat after intraventricular administration of tritium-labelled norepinephrine, dopamine, serotonin and the precursors. Z Zellforsch Mikrosk Anat 115:137–148

    Article  PubMed  Google Scholar 

  • Reubi J-C, Emson PC (1978) Release and distribution of endogenous 5-HT in rat substantia nigra. Brain Res 139:168–174

    Article  Google Scholar 

  • Reubi J-C, Iverson LL, Jessel TM (1977) Dopamine selectively increases [3H]GABA release from slices of rat substantia nigra in vitro. Nature 268:652–654

    Article  PubMed  CAS  Google Scholar 

  • Rice ME, Cammack J (1991) Anoxia resistant turtle brain maintains ascorbic acid content in vitro. Neurosci Lett 132:141–145

    Article  PubMed  CAS  Google Scholar 

  • Rice ME, Nicholson C (1987) Interstitial ascorbate in turtle brain is modulated by release and extracellular volume change. J Neurochem 49:1096–1103

    Article  PubMed  CAS  Google Scholar 

  • Rice ME, Nicholson C (1989) Measurement of nanomolar dopamine diffusion using low-noise perfluorinated ionomercoated carbon fibre microelectrodes and high-speed cyclic voltammetry. Anal Chem 61:1805–1810

    Article  PubMed  CAS  Google Scholar 

  • Richards CD, Rice ME, Nedergaard S, Hounsgaard J, Midtgaard J, Nicholson C, Greenfield SA (1993) Somato-dendritic release of dopamine from substantia nigra and VTA monitored in real-time with fast cyclic voltammetry in vitro. Soc Neurosci Abstr 19:739

    Google Scholar 

  • Robertson GS, Damsma G, Fibiger HC (1991) Characterization of dopamine release in the substantia nigra by in vivo microdialysis in freely moving rats. J Neurosci 11:2209–2215

    PubMed  CAS  Google Scholar 

  • Santiago M, Westerink BHC (1990) Characterization of the in vivo release of dopamine as recorded by different types of intracerebral microdialysis probes. Naunyn-Schmiedeberg’s Arch Pharmacol 342:407–414

    Article  CAS  Google Scholar 

  • Santiago M, Machado A, Cano J (1992) Fast sodium channel dependency of the somatodendritic release of dopamine in the rat’s brain. Neurosci Lett 148:145–147

    Article  PubMed  CAS  Google Scholar 

  • Sotelo C (1971) The fine structural localization of norepinephrine3H in the substantia nigra and area postrema of the rat. An autoradiographic study. J Ultrastruct Res 36:824–841

    Article  PubMed  CAS  Google Scholar 

  • Stamford JA, Kruk ZL, Millar J (1986) Sub-second striatal dopamine release measured by in vivo voltammetry. Brain Res 381:351–355

    Article  PubMed  CAS  Google Scholar 

  • Stamford JA, Kruk ZL, Millar J (1990) Striatal dopamine terminals release serotonin after 5-HTP pretreatment: in vivo voltammetric data. Brain Res 515:173–180

    Article  PubMed  CAS  Google Scholar 

  • Tagerud SEO, Cuello AC (1979) Dopamine release from the rat substantia nigra in vitro. Effect of raphe lesions and veratrine stimulation. Neuroscience 4:2021–2029

    Article  PubMed  CAS  Google Scholar 

  • Wassef M, Berod A, Sotelo C (1981) Dopaminergic dendrites in the pars reticulata of the rat substantia nigra and their striatal input. Combined immunocytochemical localization of tyrosine hydroxylase and anterograde degeneration. Neuroscience 6:2125–2139

    Article  PubMed  CAS  Google Scholar 

  • Weidemann DJ, Basse-Tomusk A, Wilson RL, Rebec GV, Wightman RM (1990) Interference by DOPAC and ascorbate during attempts to measure drug-induced changes in neostriatal dopamine with Nafion-coated, carbon fiber electrodes. J Neurosci Methods 35:9–18

    Article  Google Scholar 

  • Westerink BHC, Damsma G, Rollema H, de Vries JB, Horn AS (1987) Scope and limitations of in vivo brain dialysis: a comparison of its application to various neurotransmitter systems. Life Sci 41:1763–1776

    Article  PubMed  CAS  Google Scholar 

  • Wilson CJ, Groves PM, Fifková E (1977) Monoaminergic synapses, including dendro-dendritic synapses in the rat substantia nigra. Exp Brain Res 30:161–174

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman JB, Wightman RM (1991) Simultaneous electrochemical measurements of oxygen and dopamine in vivo. Anal Chem 63:24–28

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rice, M.E., Richards, C.D., Nedergaard, S. et al. Direct monitoring of dopamine and 5-HT release in substantia nigra and ventral tegmental area in vitro. Exp Brain Res 100, 395–406 (1994). https://doi.org/10.1007/BF02738400

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738400

Key words

Navigation