Skip to main content
Log in

Cell contraction caused by microtubule disruption is accompanied by shape changes and an increased elasticity measured by scanning acoustic microscopy

  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The state of crosslinking of microfilaments and the state of myosin-driven contraction are the main determinants of the mechanical properties of the cell cortex underneath the membrane, which is significant for the mechanism of shaping cells. Therefore, any change in the contractile state of the actomyosin network would alter the mechanical properties and finally result in shape changes. The relationship of microtubules to the mechanical properties of cells is still obscure. The main problem arises because disruption of microtubules enhances acto-myosin-driven contraction. This reaction and its impact on cell shape and elasticity have been investigated in single XTH-2 cells. Microtubule disruption was induced by colcemid, a polymerization inhibitor. The reaction was biphasic: a change in cell shape from a fried egg shape to a convex surface topography was accompanied by an increase in elastic stiffness of the cytoplasm, measured as longitudinal sound velocity revealed by scanning acoustic microscope. Elasticity increases in the cell periphery and reaches its peak after 30 min. Subsequently while the cytoplasm retracts from the periphery, longitudinal sound velocity (elasticity) decreases. Simultaneously, a two- to threefold increase of F-actin and alignment of stress fibers from the cell center to cell-cell junctions in dense cultures are induced, supposedly a consequence of the increased tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bray, D., Heath, J., and Moss, D. (1986) The membrane-associated “cortex” of animal cells: its structure and mechanical properties.J. Cell Sci. Suppl., 71–88.

    Google Scholar 

  2. Korenstein, R., Tuvia, S., Mittelmann, L., and Levin, S. (1994) Local bending fluctuations of the cell membrane, inBiomechanics of Active Movement and Deformation of Cells. NATO ASI Series H42, pp. 415–423. Heidelberg, Springer Verlag.

    Google Scholar 

  3. Layrand, D. B., Matveeva, N. B., Teplov, V. A., and Beylina, S. J. (1972) The role of elastoosmotic parameters in locomotion of myxomycete plasmodia.Acta Protozool. 11, 339–354.

    Google Scholar 

  4. Strohmeier, R. and Bereiter-Hahn, J. (1987) Hydrostatic pressure in epidermal cells is dependent on Ca-mediated contractions.J. Cell Sci. 88, 631–640.

    PubMed  Google Scholar 

  5. Danowski, B. (1989) Fibroblasts contractility and actin organization are stimulated by microtubule inhibitors.J. Cell Sci. 93, 255–266.

    PubMed  CAS  Google Scholar 

  6. Kolodney, M. S. and Elson, E. L. (1995) Contraction due to microtubule disruption is associated with increased phosphorylation of myosin regulatory light chain.Proc. Natl. Acad. Sci. USA 92, 10,252–10,256.

    Article  CAS  Google Scholar 

  7. Lüers, H., Hillman, K., Litniewski, J., and Bereiter-Hahn, J. (1992) Acoustic microscopy of cultured cells: disruption of forces and cytoskeletal elements.Cell Biophys. 18, 279–293.

    Google Scholar 

  8. Yastas, S. and Bereiter-Hahn, J. (1996) InInternational Symposium on Acoustical Imaging 22, in press.

  9. Briggs, A. (1992) Acoustic microscopy, inMonographs on the Physics and Chemistry of Materials (Brook, R., Hirsch, P. B., Humphreys, C. J., and Mott, N. F., eds.), Clarendon, Oxford, UK.

    Google Scholar 

  10. Bereiter-Hahn, J. (1995) Probing biological cells and tissues with acoustic microscopy, inAdvances in Acoustic Microscopy (Briggs, A., ed.), Plenum, New York, pp. 79–115.

    Google Scholar 

  11. Schlage, W. K., Kuhn, C., and Bereiter-Hahn, J. (1981) EstablishedXenopus tadpole heart endothelium (XTH) cells exhibiting selected properties of primary cells.Eur. J. Cell Biol. 24, 342.

    Google Scholar 

  12. Kilmartin, J.V., Wright, B., and Milstein, C. (1982) Rat monoclonal antibodies derived by using a new nonsecreting rat cell line.J. Cell Biol. 93, 173–185.

    Article  Google Scholar 

  13. Faulstich, H., Trischmann, H., and Mayer, D. (1983) Preparation of tetramethylrhodaminylphalloidin and uptake of the toxin into short term cultured hepatocytes by endocytosis.Exp. Cell Res. 144, 73–82.

    Article  PubMed  CAS  Google Scholar 

  14. Bereiter-Hahn, J. and Kajstura, J. (1987) Scanning microfluorimetric measurement of TRITC-phalloidin labelled F-actin in cultured cells: dependence of F-actin content on density of normal and transformed cells.Histochemistry 90, 271–276.

    Article  Google Scholar 

  15. Bereiter-Hahn, J. and Vesely, P. (1994) Measurement of cellular eslastic properties by acoustic microscopy, inCell Biology, A Laboratory Handbook (Celis, J. E., ed.), Academic, San Diego, CA, pp. 15–24.

    Google Scholar 

  16. Hildebrand, J. A. and Rugar, D. (1984)J. Microsc. 134, 245–260.

    PubMed  CAS  Google Scholar 

  17. Litniewski, J. and Bereiter-Hahn, J. (1990) Measurements of cells in culture by scanning acoustic microscopy.J. Microsc. 158, 95–107.

    PubMed  CAS  Google Scholar 

  18. Hegner, S. and Bereiter-Hahn, J. (1992) Volume determination of adhering cells in culture by means of acoustic interferometry, inCell and Tissue Culture Models in Dermatological Research (Bernd, A., Bereiter-Hahn, J., Hevert, F., and Holzmann, H., eds.), Springer Verlag, Heidelberg, pp. 58–66.

    Google Scholar 

  19. Wehland, J. and Weber, K. (1987) Turnover of the carboxy-terminal tyrosine of a-tubulin and means of reaching elevated levels of detyrosination in living cells.J. Cell Sci. 88, 185–203.

    PubMed  CAS  Google Scholar 

  20. Horwitz, S. B., Lothstein, L., and Manfredi, J. J. (1986) Taxol: mechanism of action and resistance.Ann. NY Acad. Sci. 466, 733–744.

    Article  PubMed  CAS  Google Scholar 

  21. Buxbaum, R. E. and Heidemann, S. R. (1988) A thermodynamic model for force integration and microtubule assembly during axonal elongation.J. Theor. Biol. 134, 379–390.

    Article  PubMed  CAS  Google Scholar 

  22. Ingber, D. E. (1993) Cellular tensegiety: defining new rules of biological design that govern the cytoskeleton.J. Cell Sci. 104, 613–627.

    PubMed  Google Scholar 

  23. Harris, A. K., Stopak, D., and Wild, P. (1981) Fibroblast traction as a mechanism for collagen morphogenesis.Nature 290, 249–251.

    Article  PubMed  CAS  Google Scholar 

  24. Stolz, B. and Bereiter-Hahn, J. (1988) Calcium sensitivity of microtubules changes during the cell cycle ofXenopus laevis tadpole endothelial cells.Cell Biol. Int. Rep. 12, 313–320.

    Article  PubMed  CAS  Google Scholar 

  25. Korohoda, W. and Kaystura, J. (1982) Demonstration of the significance of isometric contraction for the formation of stress fibres in chick embryo fibroblasts.Folia Histochem. Cytochemistry 20, 153–156.

    CAS  Google Scholar 

  26. Fleischer, M. and Wohlfahrt-Bottermann, K. E. (1975) Correlation between tension force generation, fibrillogenesis and ultrastructure of cytoplasmatic actomyosin during isometric contractions of protoplasmic strands.Cytobiology 10, 339–365.

    Google Scholar 

  27. Burridge, K., Fath, K., Kelly, T., Nickolls, G., and Turner, C. (1988) Focal adhesions: the extracellular matrix and the cytoskeleton.Ann. Rev. Cell. Biol. 4, 487–525.

    PubMed  CAS  Google Scholar 

  28. Geiger, B., Yehuda-Levenberg, S., and Bershadsky, A.D. (1995) Molecular interactions in the submembrane plaque of cell-cell and cell-matrix adhesions.Acta Anat. 154, 46–62.

    PubMed  CAS  Google Scholar 

  29. Bershadsky, A., Chausovsky, A., Becker, E., Lyubimova, A., and Geiger, B. (1996) Involvement of microtubules in the control of adhesion-dependent signal transduction.Curr. Bio. 6/10, 1279–1289.

    Article  Google Scholar 

  30. Kajstura, J. and Bereiter-Hahn, J. (1993) Disruption of microtubules induces formation of actin fibrils in density-inhibited 3T3 cells.Cell Biol. Int. 17, 1023–1031.

    Article  PubMed  CAS  Google Scholar 

  31. Cooper, J. A. and Pollard, T. D. (1982) Methods to measure actin polimerization,Methods in Enzymology vol. 85, pp. 182–189.

    Article  PubMed  CAS  Google Scholar 

  32. Collings, D. A., Wasteneys, G. O., and Williamson, R. E. (1996) Actin-microtubule interactions in the algaNitella: analysis of the mechanism by which microtubule depolymerization potentiates cytochalasin's effects on streaming.Protoplasma 191, 178–190.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bereiter-Hahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karl, I., Bereiter-Hahn, J. Cell contraction caused by microtubule disruption is accompanied by shape changes and an increased elasticity measured by scanning acoustic microscopy. Cell Biochem Biophys 29, 225–241 (1998). https://doi.org/10.1007/BF02737896

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02737896

Index Entries

Navigation