Skip to main content
Log in

The roles of free radicals in amyotrophic lateral sclerosis

  • Minireview
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The mutations of the Cu,Zn superoxide dismutase (Cu,Zn-SOD) gene observed in amyotrophic lateral sclerosis (ALS) patients suggest that free radicals play a role in this fatal disease. Free radicals trigger oxidative damage to proteins, membrane lipids, and DNA, thereby destroying neurons. Mutations of the SOD gene may reduce its superoxide dismutase activity, thereby elevating free radical levels. In addition, the mutant SOD protein may function as a peroxidase to oxidize cellular components, and it may also react with peroxynitrite—a product of the reaction between superoxide and nitric oxide—to ultimately form nitrate proteins. The selective degeneration of motor neurons in ALS may be caused by the high level of Cu,Zn-SOD present in and the large number of glutamatergic synapses projecting to these neurons. Free radical-triggered and age-accumulated oxidation may modify the program controlling motor neuron death, thereby initiating apoptosis of motor neurons in young adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexianu A., Mohamed H., Smith R. G., Colom L. V., and Appel S. H. (1994) Apoptotic cell death of a hybrid motoneuron cell line induced by immunoglobulins from patients with amyotrophic lateral sclerosis.J. Neurochem. 63, 2365–2368.

    Article  PubMed  CAS  Google Scholar 

  • Amici A., Levine R. L., Tsai L., and Stadtman E. R. (1989) Conversion of amino acid residues in proteins and amino acid homopolymers to carbonyl derivates by metal-catalyzed oxidation reactions.J. Biol. Chem. 264, 3341–3349.

    PubMed  CAS  Google Scholar 

  • Aruoma O. I., Halliwell B., and Dizdaroglu M. (1989) Ironion-dependent modification of bases in DNA by the superoxide radical-generating system hypoxanthine/xanthine oxidase.J. Biol. Chem. 264, 13,024–13,028.

    CAS  Google Scholar 

  • Barry M. J. and O’Donovan M. J. (1987) The effects of excitatory amino acids and their antagonists on the generation of motor activity in the isolated chick spinal cord.Brain Res. 433, 271–276.

    PubMed  CAS  Google Scholar 

  • Beckman J. S., Beckman T. W., Chen J., Marshall P. A., and Freeman B. A. (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide.Proc. Natl. Acad. Sci. USA 87, 1620–1624.

    Article  PubMed  CAS  Google Scholar 

  • Beckman J. S., Carson M., Smith C. D., and Koppenol W. H. (1993) ALS, SOD and peroxynitrite.Nature 364, 584.

    Article  PubMed  CAS  Google Scholar 

  • Beitz A. J. and Ecklund L. J. (1988) Co-localization of fixative-modified glutamate and glutaminase but not GAD in rubrospinal neurons.J. Comp. Neurol. 274, 265–279.

    Article  PubMed  CAS  Google Scholar 

  • Birnboim H. C. (1988) Superoxide anion may trigger DNA strand breaks in human granulocytes by acting at a membrane target.Ann. NY Acad. Sci. 551, 82–94.

    Article  Google Scholar 

  • Bowling A. C., Schulz J. B., Brown R. H. Jr., and Beal M. F. (1993) Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis.J. Neurochem. 61, 2322–2325.

    Article  PubMed  CAS  Google Scholar 

  • Braughler J. M. (1985) Lipid peroxidation-induced inhibition of γ-aminobutyric acid uptake in rat brain synaptosomes: protection by glucocorticoids.J. Neurochem. 44, 1282–1288.

    Article  PubMed  CAS  Google Scholar 

  • Braughler J. M., Duncan L. A., and Chase R. L. (1985) Interaction of lipid peroxidation and calcium in the pathogenesis of neuronal injury.Cent. Nerv. Sys. Trauma 2, 269–283.

    CAS  Google Scholar 

  • Braughler J. M., Duncan L. A., and Chase R. L. (1986) The involvement of iron in lipid peroxidation.J. Biol. Chem. 261, 10,282–10,289.

    CAS  Google Scholar 

  • Brown R. H. Jr. (1994) Clinical implications of basic research: a transgenic-mouse model of amyotrophic lateral sclerosis.New Engl. J. Med. 331, 1091,1092.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan J. T. and Grillner S. (1987) Newly identified glutamate interneurons and their role in locomotion in the lamprey spinal cord.Science 236, 312–314.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan J. T., Grillner S., Cullheim S., and Risling M. (1989) Identification of excitatory interneurons contributing to generation of locomotion in lamprey: structure, pharmacology and function.J. Neurophysiol. 62, 59–69.

    PubMed  CAS  Google Scholar 

  • Camu W., Billiard M., and Baldy-Moulinier M. (1993) Fasting plasma and CSF amino acid levels in amyotrophic lateral sclerosis: a subtype analysis.Acta Neurol. Scand. 88, 51–55.

    Article  PubMed  CAS  Google Scholar 

  • Chan P. H., Chen S. F., and Yu A. C. H. (1988) Induction of intracellular superoxide radical formation by arachidonic acid and by polyunsaturated fatty acids in primary astrocytic cultures.J. Neurochem. 50, 1185–1193.

    Article  PubMed  CAS  Google Scholar 

  • Chan P. H. and Fishman R. A. (1980) Transient formation of superoxide radicals in polyunsaturated fatty acid-induced brain swelling.J. Neurochem. 35, 1004–1007.

    Article  PubMed  CAS  Google Scholar 

  • Chan P. H. and Fishman R. A. (1982) Alterations of membrane integrity and cellular constituents by arachidonic acid in neuroblastoma and glioma cells.Brain Res. 248, 151–157.

    Article  PubMed  CAS  Google Scholar 

  • Chan P. H., Fishman R. A., Schmidley J. W., and Chen S. F. (1984) Release of polyunsaturated fatty acids from phospholipids and alteration of brain membrane integrity by oxygen-derived free radicals.J. Neurosci. Res. 12, 595–600.

    Article  PubMed  CAS  Google Scholar 

  • Chan P. H., Yurko M., and Fishman R. A. (1982) Phospholipid degradation and cellular edema induced by free radicals in brain cortical slices.J. Neurochem. 38, 525–531.

    Article  PubMed  CAS  Google Scholar 

  • Coyle J. T. and Puttfarcken P. (1993) Oxidative stress, glutamate, and neurodegenerative disorders.Science 262, 689–693.

    Article  PubMed  CAS  Google Scholar 

  • Cross C. E., Reznick A. Z., Packer L., Davis P. A., Suzuki Y. J., and Halliwell B. (1992) Oxidative damage to human plasma proteins by ozone.Free Rad. Res. Commun. 15, 347–352.

    CAS  Google Scholar 

  • Dawson V. L., Dawson T. M., London E. D., Bredt D. S., and Snyder S. H. (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures.Proc. Natl. Acad. Sci. USA 88, 6368–6371.

    Article  PubMed  CAS  Google Scholar 

  • Dawson T. M., Dawson V. L., and Snyder S. H. (1992) A novel neuronal messenger molecule in brain: the free radical, nitric oxide.Ann. Neuron 32, 297–311.

    Article  CAS  Google Scholar 

  • Deng H.-X., Hentati A., Tainer J. A., Iqbal Z., Cayabyab A., Hung W-Y., Getzoff E. D., Hu P., Herzfeldt B., Roos R. P., Warner C., Deng G., Soriano E., Smyth C., Parge H. E., Ahmed A., Roses A. D., Hallewell R. A., Pericak-Vance M. A., and Siddique T. (1993) Amyotrophic lateral sclerosis and structural defects in Cu,Zn Superoxide dismutase.Science 261, 1047–1051.

    Article  PubMed  CAS  Google Scholar 

  • Elroy-Stein O., Bernstein Y., and Groner Y. (1986) Overproduction of human Cu/Zn superoxide dismutase in transfected cells: extenuation of paraquat-mediated cytotoxicity and enhancement of lipid peroxidation.EMBO J. 5, 615–622.

    PubMed  CAS  Google Scholar 

  • Floyd R. A. (1990) Role of oxygen free radicals in carcinogenesis and brain ischemia.FASEB J. 4, 2587–2597.

    PubMed  CAS  Google Scholar 

  • Floyd R. A. (1991) Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compoundN-tert-butyl-α-phenylnitrone.Proc. Natl. Acad. Sci. USA 88, 3633–3636.

    Article  PubMed  Google Scholar 

  • Floyd R. A. and Carney J. M. (1992) Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress.Ann. Neurol. 32, S22-S27.

    Article  PubMed  CAS  Google Scholar 

  • Floyd R. A., Watson J. J., Harris J., West M., and Wong P. K. (1986) Formation of 8-hydroxydeoxy-guanosine, hydroxyl free radical adduct of DNA in granulocytes exposed to the tumor promotor, tetradeconylphorbolacetate.Biochem. Biophys. Res. Commun. 137, 841–846.

    Article  PubMed  CAS  Google Scholar 

  • Floyd R. A., West M. S., Eneff K. L., Hogsett W. E., and Tingey D. T. (1988) Hydroxyl free radical mediated formation of 8-hydroxyguanine in isolated DNA.Arch. Biochem. Biophys. 262, 266–272.

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I. (1986) Biological effects of the superoxide radical.Arch. Biochem. Biophys. 247, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite J. (1991) Glutamate, nitric oxide and cell-cell signaling in the nervous system.Trends Neurosci. 14, 60–67.

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite J., Garthwaite G., Palmer R. M. J., and Moncada S. (1989) NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices.Eur. J. Pharmacol. Mol. Pharmacol. Sect. 172, 413–416.

    Article  CAS  Google Scholar 

  • Ginsberg M. D., Watson B. D., Busto R., Yoshida S., Prado R., Nakayama H., Ikeda M., Dietrich W. D., and Globus M. Y.-T. (1988) Peroxidative damage to cell membranes following cerebral ischemia.Neurochem. Path. 9, 171–193.

    CAS  Google Scholar 

  • Greenlund L. J. S., Deckwerth T. L., and Johnson E. M. Jr. (1995) Superoxide dismutase delays neuronal apoptosis: a role for reactive oxygen species in programmed neuronal death.Neuron 14, 303–315.

    Article  PubMed  CAS  Google Scholar 

  • Gurney M. E., Pu H., Chiu A. Y., Canto M. C. D., Polchow C. Y., Alexander D. D., Caliendo J., Hentati A., Kwon Y. W., Deng H.-X., Chen W., Zhai P., Sufit R. L., and Siddique T. (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation.Science 264, 1772–1775.

    Article  PubMed  CAS  Google Scholar 

  • Gurney M. E., Curring F. B., Zhai P., Doble A., Taylor C. P., Andrus P. K., and Hall E. D. (1996) Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis.Ann. Neurol. 39, 147–157.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B. (1987) Oxidants and human disease: some new concepts.FASEB J. 1, 358–364.

    PubMed  CAS  Google Scholar 

  • Halliwell B. (1989) Oxidants and the central nervous system: some fundamental questions. Is oxidant damage relevant to Parkinson’s disease, Alzheimer’s disease, traumatic injury or stroke?Acta Neurol. Scand. 126, 23–33.

    CAS  Google Scholar 

  • Halliwell B. and Gutteridge J. M. C. (1986) Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts.Arch. Biochem. Biophys. 246, 501–514.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B. and Gutteridge J. M. C. (1990) The antioxidants of human extracellular fluids.Arch. Biochem. Biophys. 280, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Hogg N., Darley-Usmar M., Wilson M. T., and Moncada S. (1992) Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide.Biochem. J. 281, 419–424.

    PubMed  CAS  Google Scholar 

  • Ikeda Y. and Long D. M. (1990) The molecular basis of brain injury and brain edema: the role of oxygen free radicals.Neurosurgery 27, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Imlay J. A. and Linn S. (1988) DNA damage and oxygen radical toxicity.Science 240, 1302–1309.

    Article  PubMed  CAS  Google Scholar 

  • Ince P. G., Shaw P. J., Candy J. M., Mantle D., Tandon L., Ehmann W. D., and Markesbery W. R. (1994) Iron, selenium and glutathione peroxidase activity are elevated in sporadic motor neuron disease.Neurosci. Lett. 182, 87–90.

    Article  PubMed  CAS  Google Scholar 

  • Ischiropoulos H., Zhu L., Chen J., Tsai M., Martin J. C., Smith C. D., and Beckman J. S. (1992) Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase.Arch. Biochem. Biophys. 298, 431–437.

    Article  PubMed  CAS  Google Scholar 

  • Ito K., Yamamoto K., and Kawanishi S. (1992) Manganese-mediated oxidative damage of cellular and isolated DNA by isoniazid and related hydrazines: non-Fenton-type hydroxyl radical formation.Biochemistry 31, 11,606–11,613.

    Article  CAS  Google Scholar 

  • Iwasaki I., Ikeda K., and Kinoshita M. (1993) Decreased cerebrospinal-fluid superoxide dismutase in amyotrophic lateral sclerosis.Lancet 342, 1118.

    Article  PubMed  CAS  Google Scholar 

  • Jesberger J. A. and Richardson J. S. (1991) Oxygen free radicals and brain dysfunction.Intern. J. Neurosci. 57, 1–17.

    Article  CAS  Google Scholar 

  • Jones C. T., Brock D. J. H., Warlow C. P., and Swingler R. J. (1993) Cu/Zn superoxide dismutase (SOD1) mutations and sporadic amyotrophic lateral sclerosis.Lancet 342, 1050,1051.

    Article  PubMed  CAS  Google Scholar 

  • Kinuta Y., Kimura M., Itokawa Y., Ishikawa M., and Kikuchi H. (1989) Changes in xanthine oxidase in ischemic rat brain.J. Neurosurg. 71, 417–420.

    PubMed  CAS  Google Scholar 

  • Knowles R. G., Palacios M., Palmer R. M. J., and Moncada S. (1989) Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase.Proc. Natl. Acad. Sci. USA 86, 5159–5162.

    Article  PubMed  CAS  Google Scholar 

  • Kontos H. A., Wei E. P., Ellis E. F., Jenkins L. W., Povlishock J. T., Rowe G. T., and Hess M. L. (1985) Appearance of superoxide anion radical in cerebral extracellular space during increased prostaglandin synthesis in cats.Circ. Res. 57, 142–151.

    PubMed  CAS  Google Scholar 

  • Kontos H. A., Wei E. P., Povlishock J. T., and Christman C. W. (1984) Oxygen radicals mediate the cerebral arteriolar dilation from arachidonate and bradykinin in cats.Circ. Res. 55, 295–304.

    PubMed  CAS  Google Scholar 

  • Kuehl F. A. Jr. and Egan R. W. (1980) Prostaglandins, arachidonic acid, and inflammation.Science 210, 978–984.

    Article  PubMed  CAS  Google Scholar 

  • Lafon-Cazal M., Pietri S., Culcasi M., and Bockaert J. (1993) NMDA-dependent superoxide production and neurotoxicity.Nature 364, 535–537.

    Article  PubMed  CAS  Google Scholar 

  • Linsemann K. L., Larson P., Braughler J. M., and McCall J. M. (1993) Iron-initiated tissue oxidation: lipid peroxidation, vitamin E destruction and protein thiol oxidation. Inhibition by a novel antioxidant.Biochem. Pharmacol. 45, 1477–1482.

    Article  Google Scholar 

  • Lipton S. A., Chol Y.-B., Pan Z.-H., Lel S. Z., Chen H.-S. V., Sucher N. J., Loscalzo J., Singel D. J., and Stamler J. S. (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds.Nature 364, 626–632.

    Article  PubMed  CAS  Google Scholar 

  • Liu D. (1993) Generation and detection of hydroxyl radicalin vivo in rat spinal cord by microdialysis administration of Fenton’s reagents and microdialysis sampling.J. Biochem. Biophys. Meth. 27, 281–293.

    Article  PubMed  CAS  Google Scholar 

  • Liu D. (1994) An experimental model combining microdialysis with electrophysiology, histology, and neurochemistry for studying excitotoxicity in spinal cord injury: effect of NMDA and kainate.Mol. Chem. Neuropath. 23, 77–92.

    Google Scholar 

  • Liu D. and Li L. (1995) Prostaglandin F2a rises in response to hydroxyl radical generatedin vivo.Free Rad. Biol. Med. 18, 571–576.

    Article  PubMed  CAS  Google Scholar 

  • Liu D., Li L., and Augustus L. (1995a)In vivo evidence for the free radical mechanism of peroxidative damage to membrane lipids in the rat spinal cord (abstract)J. Neurotrauma 12, 442.

    Google Scholar 

  • Liu D., Yang J., Li L., and McAdoo D. J. (1995b) Paraquat—a superoxide generator—kills neurons in the rat spinal cord.Free Rad. Biol. Med. 18, 861–867.

    Article  PubMed  CAS  Google Scholar 

  • Liu D. and McAdoo D. J. (1992) In vivo administration of L-glutamate kills motor neurons in the rat spinal cord (abstract).J. Neurotrauma 9, 64.

    Google Scholar 

  • Liu D. and McAdoo D. J. (1993a) An experimental model combining microdialysis with electrophysiology, histology, and neurochemistry for exploring mechanisms of secondary damage in spinal cord injury: the effect of potassium.J. Neurotrauma 10, 349–362.

    Article  PubMed  CAS  Google Scholar 

  • Liu D. and McAdoo D. J. (1993b) Methylprednisolone reduces excitatory amino acid release following experimental spinal cord injury.Brain Res. 609, 293–297.

    Article  PubMed  CAS  Google Scholar 

  • Liu D., Yang R., Yan X., and McAdoo D. J. (1994) Hydroxyl radical generatedin vivo kill neurons in spinal cord: electrophysiological, histological, and neurochemical results.J. Neurochem. 62, 37–44.

    Article  PubMed  CAS  Google Scholar 

  • McCord J. M. (1985) Oxygen-derived free radicals in postischemic tissue injury.New Engl. J. Med. 312, 159–163.

    Article  PubMed  CAS  Google Scholar 

  • McCord J. M. (1994) Mutant mice, Cu, Zn superoxide dismutase, and motor neuron degeneration.Science 266, 1586,1587.

    PubMed  CAS  Google Scholar 

  • Muller K. and Gurster D. (1993) Hydroxyl radical damage to DNA sugar and model membranes induced by anthralin (dithranol).Biochem. Pharmacol. 17, 1695–1704.

    Article  Google Scholar 

  • Nihei H., Kanemitsu H., Tamura A., Oka H., and Sano K. (1989) Cerebral uric acid, xanthine, and hypoxanthine after ischemia: the effect of allopurinol.Neurosurgery 25, 613–617.

    Article  PubMed  CAS  Google Scholar 

  • Norris K. H. and Hornsby P. J. (1990) Cytotoxic effects of expression of human superoxide dismutase in bovine adrenocortical cells.Mutation Res. 237, 95–106.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien R. J. and Fischbach G. D. (1986) Excitatory synaptic transmission between interneurons and motoneurones in chick spinal cord cell cultures.J. Neurosci. 6, 3284–3289.

    PubMed  CAS  Google Scholar 

  • Olanow C. W. (1993) Superoxide dismutase and ALS.TINS 16, 439–444.

    PubMed  CAS  Google Scholar 

  • Oliver C. N., Starke-Reed P. E., Stadtman E. R., Liu G. J., Carney J. M., and Floyd R. A. (1990) Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain.Proc. Natl. Acad. Sci. USA 87, 5144–5147.

    Article  PubMed  CAS  Google Scholar 

  • Palmer R. M. J., Ashton D. S., and Moncada S. (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine.Nature 333, 664–666.

    Article  PubMed  CAS  Google Scholar 

  • Pardo C. A., Zuoshang X., Borchelt D. R., and Price D. L. (1995) Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons.Proc. Natl. Acad. Sci. USA 92, 954–958.

    Article  PubMed  CAS  Google Scholar 

  • Plaitakis A. and Constantakakis E. (1993) Altered metabolism of excitatory amino acids, n-acetyl-aspartate and n-acetyl-aspartyl-glutamate in amyotrophic lateral sclerosis.Brain Res. Bull. 30, 381–386.

    Article  PubMed  CAS  Google Scholar 

  • Radi R., Beckman J. S., Bush K. M., and Freeman B. A. (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide.Arch. Biochem. Biophys. 288, 481–487.

    Article  PubMed  CAS  Google Scholar 

  • Rabizadeh S., Gralla E. B., Borchelt D. R., Gwinn R., Valentine J. S., Sisodia S., Wong P., Lee M., Hahn H., and Bredesen, D. E. (1995) Mutations associated with amyotrophic lateral sclerosis convert superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: studies in yeast and neural cells.Proc. Natl. Acad. Sci. USA 92, 3024–3028.

    Article  PubMed  CAS  Google Scholar 

  • Robberecht W., Sapp P., Viaene M. K., Rosen D., McKenna-Yasek D., Haines J., Horvitz R., Theys P., and Brown R. H. Jr. (1994) Cu/Zn superoxide dismutase activity in familial and sporadic amyotrophic lateral sclerosis.J. Neurochem. 62, 384–387.

    Article  PubMed  CAS  Google Scholar 

  • Rosen D. R., Siddique T., Patterson D., Figlewicz D. A., Sapp P., Hentati A., Donaldson D., Goto J., O’Regan J. P., Deng H.-X., Rahmani Z., Krizus A., McKenna-Yasek D., Cayabyab A., Gaston S. M., Berger R., Tanzi R. E., Halperin J. J., Herzfeldt B., Van den Bergh R., Hung W.-Y., Bird T., Deng G., Mulder D. W., Smyth C., Laing N. G., Soriano E., Pericak-Vance M. A., Haines J., Rouleau G. A., and Gsella J. S. (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis.Nature 362, 59–62.

    Article  PubMed  CAS  Google Scholar 

  • Rosen D. R., Bowling A. C., Patterson D., Usdin T. B., Sapp P., Mezey E., McKenna-Yasek D. M., O’Regan J. O., Rahman Z., Ferrante R. J., Brownstein M. J., Kowall N. W., Beal M. F., Horvitz R. H., and Brown R. H. Jr. (1994) A frequent ala 4 to val superoxide dismutase-1 mutation is associated with a rapidly progressive familial amyotrophic lateral sclerosis.Human Mol. Genet. 3, 981–987.

    Article  CAS  Google Scholar 

  • Rothstein J. D., Martin L. J., and Kuncl R. W. (1992) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis.New Engl. J. Med. 326, 1464–1468.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein J. D., Bristol L. A., Hosler B., and Brown R. H. Jr. (1994) Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons.Proc. Natl. Acad. Sci. USA 91, 4155–4159.

    Article  PubMed  CAS  Google Scholar 

  • Siesjo B. K. (1993) Basic mechanisms of traumatic brain damage.Ann. Emerg. Med. 22, 959–969.

    Article  PubMed  CAS  Google Scholar 

  • Snyder S. H. (1992) Nitric oxide: first in a new class of neurotransmitters?Science 257, 494–496.

    Article  PubMed  CAS  Google Scholar 

  • Snyder S. H. and Bredt D. S. (1991) Nitric oxide as a neuronal messenger.Trends Pharmacol. Sci. 12, 125–128.

    Article  PubMed  CAS  Google Scholar 

  • Stadtman E. R. (1990) Metal ion catalyzed oxidation of proteins: biochemical mechanism and biological consequences.J. Free Rad. Biol. Med. 9, 315–325.

    Article  CAS  Google Scholar 

  • Stadtman E. R. and Oliver C. N. (1991) Metal-catalyzed oxidation of proteins.J. Biol. Chem. 266, 2005–2008.

    PubMed  CAS  Google Scholar 

  • Stamler J. S., Singel D. J., and Loscalzo J. (1992). Biochemistry of nitric oxide and its redox-activated forms.Science 258, 1898–1902.

    Article  PubMed  CAS  Google Scholar 

  • Traystman R. J., Kirsch J. R., and Koehler R. C. (1991) Oxygen radical mechanisms of brain injury following ischemia and reperfusion.J. Appl. Physiol. 71, 1185–1195.

    PubMed  CAS  Google Scholar 

  • Troy C. M. and Shelanksi M. L. (1994) Down-regulation of copper/zinc superoxide dismutase causes apoptotic death in PC12 neuronal cells.Proc. Natl. Acad. Sci. USA 91, 6384–6387.

    Article  PubMed  CAS  Google Scholar 

  • Watson B. D. and Ginsberg M. D. (1989) Ischemic injury in the brain. Role of oxygen radical mediated processes.Ann. NY Acad. Sci. 559, 269–281.

    Article  PubMed  CAS  Google Scholar 

  • Whittemore E. R., Loo D. T., and Cotman C. W. (1994) Exposure to hydrogen peroxide induces cell death via apoptosis in cultured rat cortical neurons.Neuro Report 5, 1485–1488.

    CAS  Google Scholar 

  • Wiedau-Pazos M., Goto J. J., Rabizadeh S., Gralla E. B., Roe J. A., Lee M. K., Valentine J. S., and Bredesen D. E. (1996) Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis.Science 271, 515–520.

    Article  PubMed  CAS  Google Scholar 

  • Yim M. B., Chock P. B., and Stadtman E. R. (1993) Enzyme function of copper,zinc superoxide dismutase as a free radical generator.J. Biol. Chem. 268, 4099–4105.

    PubMed  CAS  Google Scholar 

  • Yoshiyama Y., Yamada T., Asanuma K., and Asahi T. (1994) Apoptosis related antigen, Ley and nick-end labeling are positive in spinal motor neurons in amyotrophic lateral sclerosis.Acta Neuropathol. 88, 207–211.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D. The roles of free radicals in amyotrophic lateral sclerosis. J Mol Neurosci 7, 159–167 (1996). https://doi.org/10.1007/BF02736837

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736837

Index Entries

Navigation