Skip to main content
Log in

Microtubule-associated proteins (MAPs) in the peripheral nervous system during development and regeneration

  • Original Articles
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In this article, we have described the structure and distribution of the various variants of the microtubule-associated proteins (MAPs), tau, MAP2, MAP1A, and MAP1B, that are expressed in the dorsal root ganglion (DRG) and spinal cord during development and regeneration. We have summarized the data on their gene structure and compared the sequence of the major transcripts encoding these MAPs that are expressed in the brain, the spinal cord, and the DRG. Finally, we have surveyed the studies that used a variety of experimental approaches (e.g., antisense inhibition, transgenic knockouts, and expression in neuronal and nonneuronal cells) to understand the functional significance of MAPs heterogeneity and differences observed between the central nervous system (CNS) and the peripheral nervous system (PNS) both during development and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreadis A., Brown W. M., and Kosik K. S. (1992) Structure of the human tau geneBiochemistry 31, 10,526–10,533.

    Article  Google Scholar 

  • Andreadis A., Wagner B. K., Broderick J. A., and Kosik K. S. (1996) A tau promoter region without neuronal specificity.J. Neurochem. 66, 2257–2263.

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt R. and Matus A. (1984) Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons.J. Comp. Neurol. 226, 203–221.

    Article  PubMed  CAS  Google Scholar 

  • Binder L. I., Frankfurter A., and Rebhun L. I. (1985) The distribution of tau in the mammalian central nervous system.J. Cell Biol. 101, 1371–1378.

    Article  PubMed  CAS  Google Scholar 

  • Bisby M. A. and Tetzlaff W. (1992) Changes in cytoskeletal protein synthesis following axon injury and during axon regeneration.Mol. Neurobiol. 6, 107–123.

    PubMed  CAS  Google Scholar 

  • Black M., Slaughter T., and Fischer I. (1994) Microtubule-associated MAP1B is concentrated in the distal region of growing axons.J. Neurosci. 14, 857–870.

    PubMed  CAS  Google Scholar 

  • Black M., Slaughter T., Moshiach S., Obrocka M., and Fischer I. (1996) Tau is enriched on dynamic microtubules in the distal region of growth axons.J. Neurosci. 16, 3601–3619.

    PubMed  CAS  Google Scholar 

  • Bloom G. S., Luca F. C., and Vallee R. B. (1985) Microtubule-associated protein 1B: identification of a major component of the neuronal cytoskeleton.Proc. Natl. Acad. Sci. USA 82, 5404–5408.

    Article  PubMed  CAS  Google Scholar 

  • Boyne L., Martin K., Hockfield S., and Fischer I. (1995a) Expression and distribution of phosphorylated MAP1B in growing axons of cultured hippocampal neurons.J. Neurosci. Res. 40, 439–450.

    Article  PubMed  CAS  Google Scholar 

  • Boyne L. J., Tessler A., Murray M., and Fischer I. (1995b) Distribution of big tau in the central nervous system of the adult and the developing rat.J. Comp. Neurol. 358, 279–293.

    Article  PubMed  CAS  Google Scholar 

  • Brandt R. and Lee G. (1994) Orientation, assembly and stability of microtubule bundles induced by a fragment of tau protein.Cell Motil. Cytoskel. 28, 143–154.

    Article  CAS  Google Scholar 

  • Brandt R. and Lee G. (1995) Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain.J. Cell Biol. 131, 1327–1340.

    Article  PubMed  CAS  Google Scholar 

  • Bray D. and Bunge M. B. (1981) Serial analysis of microtubules in cultured rat sensory neurons.J. Neurocytol. 10, 589–605.

    Article  PubMed  CAS  Google Scholar 

  • Brion J. P., Passareiro H., Nunez J., and Flament-Durand J. (1985) Mise en évidence immunologique de la protéine tau au niveau des lésions de dégénérescence neurofibrillaire de la maladie d’Alzheimer.Arch. Biol. 95, 229–235.

    Google Scholar 

  • Brion J. P., Guilleminot J., Couchie D., Flament-Durand J., and Nunez J. (1988) Both adult and juvenile tau microtubule-associated tau proteins are axon specific in the developing and adult rat cerebellum.Neurosci. 25, 139–146.

    Article  CAS  Google Scholar 

  • Butler M. and Shelanski M. L. (1986) Microheterogeneity of microtubule-associated tau proteins is due to differences in phosphorylation.J. Neurochem. 47, 1517–1522.

    Article  PubMed  CAS  Google Scholar 

  • Butner K. A. and Kirschner M. W. (1991) Tau protein binds to microtubules through a flexible array of distributed weak sites.J. Cell Biol. 115, 717–730.

    Article  PubMed  CAS  Google Scholar 

  • Caceres A. and Kosik K. S. (1990) Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons.Nature 343, 461–463.

    Article  PubMed  CAS  Google Scholar 

  • Calvert R. and Anderton B. H. (1985) A microtubule-associated protein, MAP1, which is expressed at elevated levels during the development of the rat cerebellum.EMBO J. 4, 1171–1175.

    PubMed  CAS  Google Scholar 

  • Chapin S. J. and Bulinski J. C. (1991) Non-neuronal 210×103 Mr microtubule-associated protein (MAP4) contains a domain homologous to the microtubule-binding domains of neuronal MAP2 and tau.J. Cell Sci. 98, 27–36.

    PubMed  CAS  Google Scholar 

  • Charrière-Bertrand C., Garner C., Tardy M., and Nunez J. (1991) Expression of various microtubule-associated protein 2 forms in the developing mouse brain and in cultured neurons and astrocytes.J. Neurochem. 56, 385–391.

    Article  PubMed  Google Scholar 

  • Chen J., Kanai Y., Cowan N. J., and Hirokawa N. (1992) Projection domains of MAP2 and tau determine spacing between microtubules in dendrites and axons.Nature 360, 674–677.

    Article  PubMed  CAS  Google Scholar 

  • Cleveland D. W., Hwo H. Y., and Kirschner M. W. (1977) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin.J. Mol. Biol. 116, 207–225.

    Article  PubMed  CAS  Google Scholar 

  • Couchie D. and Nunez J. (1985) Immunological characterization of microtubule-associated proteins specific for the immature brain.FEBS Lett. 188, 331–335.

    Article  PubMed  CAS  Google Scholar 

  • Couchie D., Mavilia C., Georgieff I., Liem R. K. H., Shelanski M. L., and Nunez J. (1992) Primary structure of high molecular weight tau present in peripheral nervous system.Proc. Natl. Acad. Sci. USA 89, 4378–4381.

    Article  PubMed  CAS  Google Scholar 

  • Couchie D., Chabas S., Mavilia C., and Nunez J. (1996) New forms of HMW MAP2 are preferentially expressed in the spinal cord.FEBS Lett. 388, 76–79.

    Article  PubMed  CAS  Google Scholar 

  • Doll T., Meichsner M., Riederer B. M., Honneger P., and Matus A. (1993) An isoform of microtubule-associated protein 2 (MAP2) containing four repeats of the tubulin-binding motif.J. Cell Sci. 106, 633–640.

    PubMed  CAS  Google Scholar 

  • Drubin D. G. and Kirschner M. W. (1986) Tau protein function in living cells.J. Cell Biol. 103, 2739–2746.

    Article  PubMed  CAS  Google Scholar 

  • Drubin D. G., Caput D., and Kirschner M. W. (1985a) Studies on the expression of the microtubule-associated protein tau, during mouse development, with newly isolated complementary probes.J. Cell Biol. 98, 1090–1097.

    Article  Google Scholar 

  • Drubin D. G., Feinstein S. C., Shooter E. M., and Kirschner M. W. (1985b) Nerve growth factor, outgrowth in PC 12 cells involves the coordinated induction of microtubule assembly and assembly promoting factors.J. Cell Biol. 101, 1799–1807.

    Article  PubMed  CAS  Google Scholar 

  • Edelman W., Zervas M., Costello P., Roback L., Fischer I., Hammarback J., Cowan N., Davies P., Wainer B., and Kucherlapati R. (1996) Neuronal abnormalities in microtubules-associated protein 1B mutant mice.Proc. Natl. Acad. Sci. USA 93, 1270–1275.

    Article  Google Scholar 

  • Ennulat D. J., Liem R. K. H., Hashim G. A., and Shelanski M. L. (1989) Two separate 18-amino acid domains of tau promote the polymerization of tubulin.J. Biol. Chem. 264, 5327–5330.

    PubMed  CAS  Google Scholar 

  • Fawcett J. W., Mathews G., Housden E., Goedert M., and Matus A. (1995) Regenerating sciatic nerve axons contain the adult rather than the embryonic pattern of microtubule-associated proteins.Neuroscience 61, 789–804.

    Article  Google Scholar 

  • Ferhat L., Ben-Ari Y., and Khrestchatisky M. (1994) Complete sequence of rat MAP2d, a novel MAP2 isoform.C. R. Acad. Sci. Paris 317, 304–309.

    PubMed  CAS  Google Scholar 

  • Ferralli J., Doll T., and Matus A. (1994) Sequence analysis of MAP2 function in living cells.J. Cell Sci. 107, 3115–3125.

    PubMed  CAS  Google Scholar 

  • Fischer I. and Romano-Clarke G. (1990) Changes in microtubule-associated protein MAP 1B phosphorylation during rat brain development.J. Neurochem. 55, 328–333.

    Article  PubMed  CAS  Google Scholar 

  • Fischer I. and Romano-Clarke G. (1991) Association of microtubule-associated protein (MAP1B) with growing axons in cultured hippocampal neurons.Mol. Cell. Neurosci. 2, 39–51.

    Article  CAS  PubMed  Google Scholar 

  • Fischer I., Konola J., and Cochary E. (1990) Microtubule-associated protein (MAP 1B) is present in cultured oligodendrocytes and colocalized with tubulin.J. Neurosci. Res. 27, 112–124.

    Article  PubMed  CAS  Google Scholar 

  • Forleo P., Couchie D., Chabas S., and Nunez J. (1996) Four repeats high-mol-wt MAP2 forms in rat dorsal ganglia.J. Mol. Neurosci. 7, 193–201.

    PubMed  CAS  Google Scholar 

  • Francon J., Lennon A. M., Fellous A., Mareck A., Pierre M., and Nunez J. (1982) Heterogeneity of microtubule-associated proteins and brain development.Eur. J. Biochem. 129, 465–471.

    Article  PubMed  CAS  Google Scholar 

  • Frappier T., Georgieff I., Brown K., and Shelanski M. L. (1994) Tau regulation of microtubule-microtubule spacing and bundling.J. Neurochem. 63, 2288–2294.

    Article  PubMed  CAS  Google Scholar 

  • Friede R. L. and Samorajski T. (1970) Axon caliber related to neurofilaments and microtubules in the sciatic nerve fibers of rats and mice.Anat. Rec. 167, 379–388.

    Article  PubMed  CAS  Google Scholar 

  • Gache Y., Guilleminot J., Bridoux A. M., and Nunez J. (1993) Heterogeneity of the high molecular weight tau protein in neuroblastoma N115 cells.J. Neurochem. 61, 873–880.

    Article  PubMed  CAS  Google Scholar 

  • Gache Y., Guilleminot J., and Nunez J. (1994) High molecular weight tau distribution and microtubule stability in neuroblastoma N115 cells.Exp. Brain Res. 100, 267–273.

    Article  PubMed  CAS  Google Scholar 

  • Garner C. C. and Matus A. (1988) Different forms of microtubule-associated protein 2 are encoded by separate mRNA transcripts.J. Cell Biol. 106, 779–783.

    Article  PubMed  CAS  Google Scholar 

  • Garner C. C., Tucker R. P., and Matus A. (1988) Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites.Nature 336, 674–677.

    Article  PubMed  CAS  Google Scholar 

  • Garner C. C., Garner A., Huber G., Kozak C., and Matus A. (1990) Molecular cloning of microtubule-associated protein 1 (MAP1A) and microtubule-associated protein 5 (MAP1B): identification of distinct genes and their differential expression in developing brain.J. Neurochem. 55, 146–154.

    Article  PubMed  CAS  Google Scholar 

  • Georgieff I., Liem R. K. H., Mellado W., Nunez J., and Shelanski M. L. (1991) High molecular weight tau: preferential localization in the peripheral nervous system.J. Cell Sci. 100, 55–60.

    PubMed  CAS  Google Scholar 

  • Georgieff I., Liem R. K. H., Couchie D., Mavilia C., Nunez J., and Shelanski M. L. (1993) Expression of high molecular weight tau in the central and peripheral nervous system.J. Cell Sci. 105, 729–737.

    PubMed  CAS  Google Scholar 

  • Goedert M. and Jakes R. (1990) Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization.EMBO J. 9, 4225–4230.

    PubMed  CAS  Google Scholar 

  • Goedert M., Spillantini M. G., Potier M. C., Ulrich J., and Crowther R. A. (1989) Cloning and sequencing an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau mRNAs in human brain.EMBO J. 8, 393–399.

    PubMed  CAS  Google Scholar 

  • Goedert M., Spillantini M. G., and Crowther R. A. (1992) Cloning of a big tau microtubule-associated protein characteristic of the peripheral nervous system.Proc. Natl. Acad. Sci. USA 89, 1983–1987.

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Weeks P. R., Mansfield S. G., Alberto C., Johnstone M., and Moya F. (1993) A phosphorylation epitope on MAP 1B that is transiently expressed in growing axons in the developing rat nervous system.Eur. J. Neurosci. 5, 1302–1311.

    Article  PubMed  CAS  Google Scholar 

  • Grundke-Ikbal I., Ikbal K., Tung Y. C., Quinlan M., Wisniewski H. M., and Binder L. I. (1986) Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer cytosleletal pathology.Proc. Natl. Acad. Sci. USA 83, 4913–4917.

    Article  Google Scholar 

  • Guilleminot J., Langkopf A., and Nunez J. (1995) Identification of a new exon of the brain microtubule-associated protein 2.C. R. Acad. Sci. Paris 318, 959–964.

    PubMed  CAS  Google Scholar 

  • Hall M. (1982) Changes in synthesis of specific proteins in axotomized dorsal root ganglia.Exp. Neurol. 73, 83–93.

    Article  Google Scholar 

  • Hammarback J. A., Obar J. A., Hughes S. A., and Vallee R. B. (1991) MAP 1B is encoded as a polyprotein that is processed to form a complex N-terminal microtubule-binding domain.Neuron 7, 129–139.

    Article  PubMed  CAS  Google Scholar 

  • Hanemaaijer R. and Ginzburg I. (1991) Involvement of mature tau isoforms in the stabilization of neurites in PC12 cells.J. Neurosci. Res. 30, 163–171.

    Article  PubMed  CAS  Google Scholar 

  • Harada A., Oguchi K., Okabe S. K., Kuno J., Terada S., Noda T., and Hirokawa N. (1994) Altered microtubule organization in small-caliber axons of mice lacking tau protein.Nature 369, 488–491.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez M. A., Avila J., Moya F., and Alberto C. (1989) Rearrangement of microtubule associated protein parallels the morphological transformation of neurons from dorsal root ganglion.Neuroscience 29, 471–477.

    Article  PubMed  CAS  Google Scholar 

  • Himmler A. (1989) Structure of the bovine tau gene: alternatively spliced transcripts generate a protein family.Mol. Cell Biol. 9, 1389–1396.

    PubMed  CAS  Google Scholar 

  • Himmler A., Dreschel D., Kirschner M. W., and Martin D. W. (1989) Tau consist of a set of proteins with repeated C-terminal microtubule-repeated domains and a variable N-terminal domain (1989)Mol. Cell Biol. 9, 1381–1388.

    PubMed  CAS  Google Scholar 

  • Hoffmann P. N. and Cleveland D. W. (1988) Neurofilament and tubulin gene expression recapitulates the developmental program during axonal regeneration: induction of a specific β tubulin isotype.Proc. Natl. Acad. Sci. USA 85, 4530–4533.

    Article  Google Scholar 

  • Kalcheva N., Albala J., O’Guin K., Rubino H., Garner C., and Shafit-Zagardo B. (1995) Genomic structure of human microtubule-associated protein 2 (MAP-2) and characterization of additional MAP-2 isoforms.Proc. Natl. Acad. Sci. USA 92, 10,894–10,898.

    CAS  Google Scholar 

  • Kempf M., Clement A., Faissner A., Lee G., and Brandt R. (1996) Tau binds to the distal axon early in development of polarity in a microtubule-and microfilament-dependent manner.J. Neurosci. 16, 5583–5592.

    PubMed  CAS  Google Scholar 

  • Kindler S. and Garner C. C. (1994) Four repeat MAP2 isoforms in human and rat brain.Mol. Brain Res. 26, 218–224.

    Article  PubMed  CAS  Google Scholar 

  • Kindler S., Schulz B., Goedert M., and Garner C. C. (1990) Molecular structure of microtubule-associated protein 2b and 2c from rat brain.J. Biol. Chem. 265, 19,679–19,684.

    CAS  Google Scholar 

  • Knops J., Kosik K. S., Lee G., Pardee J., Cohen-Gould L., and MacConlogue L. (1991) Overexpression of tau in a non neuronal cell induces long cellular processes.J. Cell Biol. 114, 725–733.

    Article  PubMed  CAS  Google Scholar 

  • Kosik K. S. and Finch E. A. (1987) MAP2 and tau segregate into dendritic and axonal domains after the elaboration of morphologically distinct neurites: an immunocytochemical study of cultured rat cerebrum.J. Neurosci. 7, 3142–3153.

    PubMed  CAS  Google Scholar 

  • Kosik K. S., Orecchio L. D., Bakalis S., and Neve R. L. (1989) Developmentally regulated expression of specific tau sequences.Neuron 2, 1389–1397.

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov S. A. and Gelfand V. I. (1987) 18 kDa microtubule-associated protein: identification as new, light chain (LC3) of microtubule-associated protein 1 (MAP 1B).FEBS Lett. 212, 145–148.

    Article  PubMed  CAS  Google Scholar 

  • Langkopf A., Hammarback J. A., Muller R., Vallee R., and Garner C. (1992) Microtubule-associated proteins 1A and LC2.J. Biol. Chem. 257, 16,561–16,566.

    Google Scholar 

  • Langkopf A., Guilleminot J., and Munez J. (1994) Two novel HMW MAP2 variants with four microtubule-binding repeats and different projection domains.FEBS Lett. 354, 259–262.

    Article  PubMed  CAS  Google Scholar 

  • Langkopf A., Guilleminot J., and Nunez J. (1995) Tau and MAP2 transfection and neurite outgrowth in ND 7/23 cells.J. Neurochem. 64, 1045–1053.

    Article  PubMed  CAS  Google Scholar 

  • Leclerc N., Kosik K. S., Cowan N., Pienkowski T. P., and Baas P. W. (1993) Process formation in Sf9 cells induced by the expression of a microtubule-associated protein-like construct.Proc. Natl. Acad. Sci. USA 90, 6223–6227.

    Article  PubMed  CAS  Google Scholar 

  • Lee G., Cowan N., and Kirschner M. W. (1988) The primary structure and heterogeneity of tau protein from mouse brain.Science 239, 285–288.

    Article  PubMed  CAS  Google Scholar 

  • Lewis S. A., Wang D., and Cowan N. J. (1988) Microtubule-associated protein MAP2 shares a microtubule binding motif with tau protein.Science 242, 936–939.

    Article  PubMed  CAS  Google Scholar 

  • Lien L. L., Feener C., Fischbach N., and Kunkel L. M. (1994) Cloning of human microtubule-associated protein 1B and the identification of a related gene on chromosome 15.Genetics 22, 273–280.

    CAS  Google Scholar 

  • Liu D. and Fischer I. (1996) Two promoters direct neuron-specific expression of the rat microtubule-associated protein 1B gene.J. Neurosci. 16, 5026–5036.

    PubMed  CAS  Google Scholar 

  • Luduena R. (1993) Are tubulin isotypes functionally significant?Mol. Biol. Cell 4, 445–457.

    PubMed  CAS  Google Scholar 

  • Ma D., Connors T., and Fischer I. (1996) Changes in MAP1B phosphorylation during regeneration of axotomized sciatic nerve in adult rat.Soc. Neurosci. Abst. 22, 577.

    Google Scholar 

  • Ma D., Nothias F., Boyne L., and Fischer I. (1997) Differential regulation of MAP1B and its phosphorylated isoform during development in rat CNS and PNS.J. Neurosci. Res., in press.

  • Mandelkow E. and Mandelkow E.-A. (1995) Microtubules and microtubule-associated proteins.Curr. Opinion Cell Biol. 7, 72–81.

    Article  PubMed  CAS  Google Scholar 

  • Mandell J. W. and Banker G. A. (1996) A spatial gradient of tau protein phosphorylation in nascent axons.J. Neurosci. 16, 5727–5740.

    PubMed  CAS  Google Scholar 

  • Mareck A., Fellous A., Francon J., and Nunez J. (1980) Changes in composition and activity of microtubule-associated proteins during brain development.Nature 284, 253–255.

    Article  Google Scholar 

  • Mavilia C., Couchie D., Mattei M. G., Nivez M. P., and Nunez J. (1993) High and low molecular weight tau proteins are differentially expressed from a single gene.J. Neurochem. 61, 1073–1081.

    Article  PubMed  CAS  Google Scholar 

  • Mavilia C., Couchie D., and Nunez J. (1994) Diversity of high molecular weight tau proteins in different regions of the nervous system.J. Neurochem. 63, 2300–2306.

    Article  PubMed  CAS  Google Scholar 

  • Migheli A., Butler M., Brown K., and Shelanski M. L. (1988) Light and electron microscopic localization of the microtubule-associated tau protein in rat brain.J. Neurosci. 8, 1846–1851.

    PubMed  CAS  Google Scholar 

  • Miller F. D., Tetzlaf W., Bisby M. A., Fawcett J. W., and Milner R. (1989) Rapid induction of the major embryonic α tubulin mRNA, Tα1, during nerve regeneration in adult rats.J. Neurosci. 9, 1452–1463.

    PubMed  CAS  Google Scholar 

  • Moskowitz P. F and Oblinger M. M. (1995) Sensory neurons selectively upregulate synthesis and transport of the βIII-tubulin protein during axonal regeneration.J. Neurosci. 15, 1545–1555.

    PubMed  CAS  Google Scholar 

  • Moskowitz P. F., Smith R., Pickett J., Frankfurter A., and Oblinger M. M. (1993) Expression of the class III β tubulin gene during axonal regeneration of dorsal root ganglia neurons.J. Neurosci. 34, 129–134.

    Article  CAS  Google Scholar 

  • Murphy D. B., Johnson K. A., and Borisy G. G. (1977) Role of tubulin-associated proteins in microtubule nucleation and elongation.J. Mol. Biol. 117, 33–52.

    Article  PubMed  CAS  Google Scholar 

  • Neve R. L., Harris P., Kosik K. S., Kurnit D. M., and Donlon T. A. (1986) Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2.Mol. Brain Res. 1, 271–280.

    Article  CAS  Google Scholar 

  • Noble M., Lewis S. A., and Cowan N. J. (1989) The microtubule binding domain of microtubule-associated protein MAP 1B contains repeated sequence motif unrelated to that of MAP2 and tau.J. Cell Biol. 109, 3367–3376.

    Article  PubMed  CAS  Google Scholar 

  • Nothias F., Boyne L., Murray M., Tessler A., and Fischer I. (1995) The expression and distribution of tau proteins and messenger RNA in rat dorsal root ganglion during development and regeneration.Neuroscience 66, 707–719.

    Article  PubMed  CAS  Google Scholar 

  • Nothias F., Fischer I., Murray M., Mirman S., and Vincent J.-D. (1996) Expression of a phosphorylated isoform of MAP1B is maintained in adult CNS areas that retain capacity for structural plasticity.J. Comp. Neurol. 368, 317–334

    Article  PubMed  CAS  Google Scholar 

  • Oblinger M. M. (1990) Differential regulation of peripherin and neurofilament gene expression in regenerating rat DRG neurons.J. Neurosci. Res. 27, 332–341.

    Article  PubMed  Google Scholar 

  • Oblinger M. M., Argasinski A., Wong J., and Kosik K. S. (1991) Tau gene expression in rat sensory neurons during development and regeneration.J. Neurosci. 11, 2453–2460.

    PubMed  CAS  Google Scholar 

  • Oudega M., Touri F., Deenen M. G., Riederer B. M., and Marani E. (1995) Immunocytochemical localization of microtubule-associated proteins 1b and 2 in the developing spinal cord.J. Anat. 187, 723–737.

    PubMed  CAS  Google Scholar 

  • Papandrikopoulou A., Doll T., Tucker R. P., Garner C. C., and Matus A. (1989) Embryonic MAP2 lacks the cross-linking sidearm sequences and dendritic targeting signal of adult MAP2.Nature 340, 650–652.

    Article  PubMed  CAS  Google Scholar 

  • Paschal B. M., Shpetner H. S., and Vallee R. B. (1987) MAP 1C is a microtubule-activated ATPase which translocate microtubules in vitro and has dynein-like properties.J. Cell Biol. 105, 1273–1282.

    Article  PubMed  CAS  Google Scholar 

  • Peng I., Binder L., and Black M. (1986) Biochemical and immunological analysis of cytoskeletal domains of neurons.J. Cell Biol. 102, 252–262.

    Article  PubMed  CAS  Google Scholar 

  • Peters A., Palay S., and Webster H. (1976)The Fine Structure of the Nervous System: the Neurons and Supporting Cells. W. B. Saunders, Philadelphia, PA.

    Google Scholar 

  • Quinlan E. M. and Halpain S. (1996) Emergence of activity-dependent, bidirectional control of microtubule-associated protein MAP2 phosphorylation during postnatal development.J. Neurosci. 16, 7627–7637.

    PubMed  CAS  Google Scholar 

  • Riederer B. and Matus A. (1985) Differential expression of distinct microtubule-associated proteins during brain development.Proc. Natl. Acad. Sci. USA 82, 6006–6009.

    Article  PubMed  CAS  Google Scholar 

  • Riederer B., Cohen R., and Matus A. (1986) MAP5: a novel brain microtubule-associated protein under strong developmental regulation.J. Neurocytol. 15, 763–775.

    Article  PubMed  CAS  Google Scholar 

  • Riederer B., Guadano-Ferraz A., and Innocenti G. M. (1991) Differences in distribution of microtubule-associated proteins 5a and 5b during development of cerebral cortex and corpus callosum in cats: dependence in phosphorylation.Dev. Brain Res. 56, 235–243.

    Article  Google Scholar 

  • Riederer B. M. and Barakat-Walter I. (1992) Differential distribution of two microtubule-associated proteins, MAP2 and MAP5, during chick dorsal root ganglion development in situ and in culture.Dev. Brain Res. 68, 111–123.

    Article  CAS  Google Scholar 

  • Sadot E., Heicken-Klein A., Barg J., Lazarovici P., and Ginzburg I. (1996) Identification of a tau promoter region mediating tissue-specific-regulated expression in PC12 cells.J. Mol. Biol. 256, 805–812.

    Article  PubMed  CAS  Google Scholar 

  • Safaei R. and Fischer I. (1989) Cloning of a cDNA encoding MAP 1B in rat brain. Regulation of mRNA levels during development.J. Neurochem. 52, 1871–1879.

    Article  PubMed  CAS  Google Scholar 

  • Schoenfeld T. A. and Obar R. (1994) Diverse distribution and function of fibrous microtubule-associated proteins in the nervous system.Intern. Rev. 151, 67–137.

    CAS  Google Scholar 

  • Schoenfeld T. A., McKerracher L., Obar R., and Vallee R. B. (1989) MAP 1A and MAP 1B are structurally related microtubule-associated proteins with distinct developmental patterns in the CNS.J. Neurosci. 9, 1712–1730.

    PubMed  CAS  Google Scholar 

  • Schwab M. E. and Bartholdi D. (1996) Degeneration and regeneration of axons in the lesioned spinal cord.Physiol. Rev. 76, 319–370.

    PubMed  CAS  Google Scholar 

  • Shea T., Beermann M. L., Nixon R. A., and Fischer I. (1992) Microtubule-associated protein tau is required for axonal neurite elaboration by neuroblastoma cells.J. Neurosci. Res. 32, 363–374.

    Article  PubMed  CAS  Google Scholar 

  • Sloboda R. D., Rudolph S. A., Rosenbaum J. L., and Greengard P. (1975) Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein.Proc. Natl. Acad. Sci. USA 70, 177–181.

    Article  Google Scholar 

  • Teng K. K., Georgieff I., Aletta J., Nunez J., Shelanski M. L., and Greene L. A. (1993) Characterization of a PC12 sub-clone (PC12-C41) with enhanced neurite outgrowth capacity: implication for a modulatory role of high molecular weight tau in neuritogenesis.J. Cell Sci. 106, 611–626.

    PubMed  CAS  Google Scholar 

  • Troy C. M., Muma N. A., Greene L. A., Price D. L., and Shelanski M. L. (1990) Regulation of peripherin and neurofilament expression in regenerating rat motor neurons.Brain Res. 529, 232–238.

    Article  PubMed  CAS  Google Scholar 

  • Tucker R. P. and Matus A. I. (1987) The molecular form and distribution of two developmentally regulated microtubule-associated proteins (MAP2 and MAP5) during morphogenesis of the avian retina.Development 101, 535–546.

    PubMed  CAS  Google Scholar 

  • Tucker R. P., Binder L. I., and Matus A. I. (1988) Neuronal microtubule-associated proteins in the embryonic avian spinal cord.J. Comp. Neurol. 271, 44–55.

    Article  PubMed  CAS  Google Scholar 

  • Vallee R. B. and Borisy G. G. (1977) Removal of the projections from cytoplasmic microtubulesin vitro by digestion with trypsin.J. Biol. Chem. 252, 377–382.

    PubMed  CAS  Google Scholar 

  • Vallee R. B. and Davis S. E. (1983) Low molecular weight microtubule-associated proteins are light chains of microtubule associated protein 1 (MAP 1B).Proc. Natl. Acad. Sci. USA 80, 1342–1346.

    Article  PubMed  CAS  Google Scholar 

  • Viereck C. and Matus A. (1990) The expression of phosphorylated and non-phosphorylated forms of MAP 1B in amphibian CNS.Brain Res. 508, 257–264.

    Article  PubMed  CAS  Google Scholar 

  • Viereck C., Tucker R. P., and Matus A. (1989) The adult rat olfactory system expresses microtubule-associated proteins found in the developing brain.J. Neurosci. 9, 3547–3557.

    PubMed  CAS  Google Scholar 

  • Vouyiouklis D. A. and Brophy P. J. (1993) Microtubule-associated protein MAP 1B expression precedes the morphological differentiation of oligodendrocytes.J. Neurosci. Res. 35, 257–267.

    Article  PubMed  CAS  Google Scholar 

  • Wiche G., Oberkanins J., and Himmler A. (1991) Molecular structure and function of microtubule-associated proteins.Intern. Rev. Cytol. 124, 217–273.

    Article  CAS  Google Scholar 

  • Wood J. G., Mirra S. S., Pollock N. J., and Binder L. I. (1990) Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau.Proc. Natl. Acad. Sci. USA 83, 4040–4043.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunez, J., Fischer, I. Microtubule-associated proteins (MAPs) in the peripheral nervous system during development and regeneration. J Mol Neurosci 8, 207–222 (1997). https://doi.org/10.1007/BF02736834

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736834

Index Entries

Navigation