Skip to main content
Log in

Insulin-induced differentiation and modulation of neuronal thread protein expression in primitive neuroectodermal tumor cells is linked to phosphorylation of insulin receptor substrate-1

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Neuronal thread proteins (NTPs) are a family of developmentally regulated molecules expressed in central nervous system (CNS) neurons and primitive neuroectodermal tumor (PNET) cell lines. NTP gene expression is modulated with DNA synthesis, neuritic sprouting, and neuronal differentiation. The present study explores the mechanism of insulin modulation of NTP gene expression during neuronal differentiation using PNET cell lines of CNS origin. PNET2 cells underwent neuronal differentiation with neurite outgrowth coupled with transient up-regulation of several species of NTP. In contrast, PNET1 cells failed to differentiate in response to insulin stimulation, although insulin receptors were more abundant than in PNET2 cells. Analysis of the insulin-mediated signal transduction pathway demonstrated that the lack of insulin responsiveness in PNET1 cells was primarily caused by impaired insulin-mediated tyrosyl phosphorylation of the insulin receptor substrate-1 (IRS-1). Correspondingly, the association between phosphatidyl-inositol 3 (PI3) kinase and phosphorylated IRS-1 was reduced in PNET1 compared with PNET2 cells. In contrast, the levels of IRS-1 protein were similar in PNET1 and PNET2 cells, and expression of the insulin receptor β subunit (Irβ) and insulin-mediated tyrosyl phosphorylation of the Irβ were greater in PNET1 than PNET2 cells. The findings suggest that insulin effected neuronal differentiation and modulation of NTP gene expression in PNET cells utilizes a signal transduction cascade that requires tyrosyl phosphorylation of IRS-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamo M., Raizada M. K., and LeRoith D. (1989) Insulin and insulin-like growth factor receptors in the nervous system.Mol. Neurobiol. 3, 71–100.

    PubMed  CAS  Google Scholar 

  • Adamo M. L., Shemer J., Roberts C. T. Jr, and LeRoith D. (1993) Insulin and insulin-like growth factor-1 induced phosphorylation in neurally derived cells.Ann. NY Acad. Sci. 692, 113–125.

    Article  PubMed  CAS  Google Scholar 

  • Alexander M. C., Lomanto M., Nasrin N., and Ramaika C. (1988) Insulin stimulates glyceraldehyde-3-phosphate dehydrogenase gene expression through cis-acting DNA sequences.Proc. Natl. Acad. Sci. USA 85, 5092–5096.

    Article  PubMed  CAS  Google Scholar 

  • Baltensperger K., Kozma L. M., Cherniack A. D., Klarlund J. K., Chawla A., Banerjee U., and Czech M. P. (1993) Binding of the Ras activator son of sevenless to insulin receptor substrate-1 signaling complexes.Science 260, 1950–1952.

    Article  PubMed  CAS  Google Scholar 

  • Burgess S. K., Jacobs S., Cuatrecasas P., and Sahyoun N. (1987) Characterization of a neuronal subtype of insulin-like growth factor I receptor.J. Biol. Chem. 262, 1618–1622.

    PubMed  CAS  Google Scholar 

  • Carter E. A. and Wands J. R. (1988) Ethanol-induced inhibition of liver cell function: I. Effect of ethanol on hormone stimulated hepatocyte DNA synthesis and the role of ethanol metabolism.Alcohol. Clin. Exp. Res. 12, 555–562.

    Article  PubMed  CAS  Google Scholar 

  • Carter E. A. and Wands J. R. (1985) Ethanol inhibits hormone stimulated hepatocyte DNA synthesis.Biochem. Biophys. Res. Commun. 128, 767–779.

    Article  PubMed  CAS  Google Scholar 

  • de la Monte S. M., Bhavani K., Xu Y.-Y., Puisieux A., and Wands J. R. (1995a) Modulation of p36 gene expression in human neuronal cells.J. Neurol. Sci. 128, 122–133.

    Article  PubMed  CAS  Google Scholar 

  • de la Monte S. M., Xu Y.-Y., Hutchins G. M., and Wands J. R. (1995b) Developmental patterns of neuronal thread protein gene expression in Down syndrome.J. Neurol. Sci. in press.

  • de la Monte S. M., Xu Y.-Y., and Wands J. R. (1995c) Modulation of neuronal thread protein expression with neuritic sprouting: relevance to Alzheimer’s disease.J. Neurol. Sci. in press.

  • de la Monte S. M., Ozturk M., and Wands J. R. (1990) Enhanced expression of an exocrine pancreatic protein in Alzheimer’s disease and the developing human brain.J. Clin. Invest. 86, 1004–1013.

    PubMed  Google Scholar 

  • de la Monte S. M., Volicer L., Hauser S. L., and Wands J. R. (1992) Increased levels of neuronal thread protein in cerebrospinal fluid of patients with Alzheimer’s disease.Ann. Neurol. 32, 733–742.

    Article  PubMed  Google Scholar 

  • de la Monte S. M. and Wands J. R. (1992) Neuronal thread protein over-expression in brains with Alzheimer’s disease lesions.J. Neurol. Sci. 113, 152–164.

    Article  PubMed  Google Scholar 

  • de la Monte S. M. and Wands J. R. (1993) Isolation of a neuronal thread protein cDNA and characterization of the mRNAs expressed in neuroectodermal tumor cells and Alzheimer’s disease brains.J. Neuropathol. Exp. Neurol. 52, 265 (Abstract).

    Google Scholar 

  • Denton R. M. (1990) Search for the missing links.Nature 348, 286–287.

    Article  PubMed  CAS  Google Scholar 

  • DiCicco-Bloom E. and Black I. B. (1988) Insulin growth factors regulated the mitotic cycle in cultured rat sympathetic neuroblasts.Proc. Natl. Acad. Sci. USA 85, 4066–4070.

    Article  PubMed  CAS  Google Scholar 

  • Gammeltoft S., Ballotti R., Nielsen F. C., Kowalski A., and Van Obberghen E. (1988) Receptors for insulin-like growth factors in the central nervous system: structure and function.Horm. Metab. Res. 20, 436–442.

    PubMed  CAS  Google Scholar 

  • Girault J. A., Chamak B., Bertuzzi G., Tixier H., Wang J. K. T., Pang D. T., and Greengard P. (1992) Protein phosphotyrosine in mouse brain: developmental changes and regulation by epidermal growth factor, type 1 insulin-like growth factor, and insulin.J. Neurochem. 58, 518–528.

    Article  PubMed  CAS  Google Scholar 

  • Gross J., Carlson R. I., Brauer A. W., Margolies M. N., Warshaw A. L., and Wands J. R. (1985) Isolation, characterization, and distribution of an unusual pancreatic human secretory protein.J. Clin. Invest. 76, 2115–2126.

    PubMed  CAS  Google Scholar 

  • Harlow E. and Lane D. (1988)Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Haystead M. M. C., Gregory P., Shirazi A., Fadden P., Mosse C., Dent P., and Haystead T. A. J. (1994) Insulin activates a novel adipocyte mitogen-activated protein kinase that shows rapid phasic kinetics and is distinct from c-Raf.J. Biol. Chem. 269, 12,804–12,808.

    CAS  Google Scholar 

  • Heidenreich K. A. (1993) Insulin and IGF-1 receptor signaling in cultured neurons.Ann. NY Acad. Sci. 692, 72–88.

    Article  PubMed  CAS  Google Scholar 

  • Heidenreich K. A., deVellis G., and Gilmore P. R. (1988) Functional properties of the subtype of insulin receptor found on neurons.J. Neurochem. 51, 878–887.

    Article  PubMed  CAS  Google Scholar 

  • Heidenreich K. A. and Toledo S. P. (1989a) Insulin receptors mediate growth effects in cultured fetal neurons. I. Rapid stimulation of protein synthesis.Endocrinology 125, 1451–1457.

    Article  PubMed  CAS  Google Scholar 

  • Heidenreich K. A. and Toledo S. P. (1989b) Insulin receptors mediate growth effects in cultured fetal neurons. II. Activation of a protein kinase that phosphorylates ribosomal protein S6.Endocrinology 125, 1458–1463.

    PubMed  CAS  Google Scholar 

  • Kao K. J., Cook D. J., and Scornik J. C. (1986) Quantititative analysis of platelet surface HLA by W6/32 anti-HLA monoclonal antibody.Blood 68, 627–632.

    PubMed  CAS  Google Scholar 

  • Karns L. R., Ng S.-C., Freeman J. A., and Fishman M. C. (1987) Cloning of complementary DNA for GAP-43, a neuronal growth-related protein.Science 236, 597–600.

    Article  PubMed  CAS  Google Scholar 

  • Korn L. J., Siebel C. W., McCormick F., and Roth R. A. (1987) Ras p21 as a potential mediator of insulin action inXenopus oocytes.Science 236, 840–843.

    Article  PubMed  CAS  Google Scholar 

  • Kozma L. M., Baltensperger K., Klarlund J. K., Porras A., Santos E., and Czech M. P. (1993) The ras signaling pathway mimics insulin action on glucose transporter translocation.Proc. Natl. Acad. Sci. USA 90, 6660–6664.

    Article  Google Scholar 

  • Lasserre C., Christa L., Simon M.-T., Vernier P., and Brechot C. A. (1992) A novel gene (HIP) activated in human primary liver cancer.Cancer Res. 52, 5089–5095.

    PubMed  CAS  Google Scholar 

  • Lenoir D. and Honegger P. (1983) Insulin-like growth factor 1 (IGF-1) stimulates DNA synthesis in fetal rat brain cell cultures.Brain Res. 283, 205–213.

    PubMed  CAS  Google Scholar 

  • Li N., Batzer A., Daly R., Yajnik V., Skolnik E., Chardin P., Bar-Sagi D., Margolis B., and Schlessinger J. (1993) Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signaling.Nature 363, 85–88.

    Article  PubMed  CAS  Google Scholar 

  • Lowry O. H., Rosebrough N. J., Farr A. L., and Randall R. J. (1951) Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  • McCormick F. (1993) Signal transduction. How receptors turn Ras on.Nature 363, 15–16.

    Article  PubMed  CAS  Google Scholar 

  • McKee A. C., Kosik K. S., and Kowall N. W. (1991) Neuritic pathology and dementia in Alzheimer’s disease.Ann. Neurol. 30, 156–165.

    Article  PubMed  CAS  Google Scholar 

  • Medema R. H., De Laat W. C., Martin G. A., McCormick F., and Bos J. L. (1992) GTPase-activating protein SH2-SH3 domains induce gene expression in a Ras-dependent fashion.Mol. Cell. Biol. 12, 3425–3430.

    PubMed  CAS  Google Scholar 

  • Messina L. J., Standaert L. M., Ishizuka T., Weinstock S. R., and Farese V. R. (1992) Role of protein kinase C in insulin’s regulation ofc-fos transcription.J. Biol. Chem. 267, 9223–9228.

    PubMed  CAS  Google Scholar 

  • Meyers M. G., Backer J. M., Sun X. J., Sholeson S., Hu P., Schlessinger J., Yokim M., Schaffhsusen B., and White M. F. (1992) IRS-1 activates phosphatidylinositol 3′-kinase by associating with Src homology 2 domains of p85.Proc. Natl. Acad. Sci. USA 89, 10,350–10,354.

    Google Scholar 

  • Mill J. F., Chao M. V., and Ishii D. N. (1985) Insulin, insulin-like growth factor II and nerve growth factor effects on tubulin mRNA levels and neurite formation.Proc. Natl. Acad. Sci. USA 82, 7126–7130.

    Article  PubMed  CAS  Google Scholar 

  • Myers M. Jr. and White M. (1993) The new elements of insulin signaling. Insulin receptor substrate-1 and proteins with SH2 domains.Diabetes 42, 643–650.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama M. and Wands J. R. (1992) Cloning and increased expression of an insulin receptor substrate-1 like gene in human hepatocellular carcinoma.Biochem. Biophys. Res. Commun. 183, 280–285.

    Article  PubMed  CAS  Google Scholar 

  • Onorato M., Mulvihill P., Connolly J., Galloway P., Whitehouse P., and Perry G. (1989) Alteration of neuritic cytoarchitecture in Alzheimer disease.Prog. Clin. Biol. Res. 317, 781–789.

    PubMed  CAS  Google Scholar 

  • Ozturk M., de la Monte S. M., Gross J., and Wands J. R. (1989) Elevated levels of an exocrine pancreatic secretory protein in Alzheimer’s disease brain.Proc. Natl. Acad. Sci. USA 86, 419–423.

    Article  PubMed  CAS  Google Scholar 

  • Pahlman S., Meyerson G., Lindgren E., Schalling M., and Johansson I. (1991) Insulin-like growth factor I shifts from promoting cell division to potentiating maturation during neuronal differentiation.Proc. Natl. Acad. Sci. USA 88, 9994–9998.

    Article  PubMed  CAS  Google Scholar 

  • Porras A., Nebreda A. R., Benito M., and Santos E. (1992) Activation of Ras by insulin in 3T3 L1 cells does not involve GTPase-activating protein phosphorylation.J. Biol. Chem. 267, 21,124–21,135.

    CAS  Google Scholar 

  • Recio-Pinto E. and Ishii D. N. (1984) Effects of insulin, insulin-like growth factor-II and nerve growth factor on neurite outgrowth in cultured human neuroblastoma cells.Brain Res. 302, 323–334.

    Article  PubMed  CAS  Google Scholar 

  • Recio-Pinto E., Lang F. F., and Ishii D. N. (1984) Insulin and insulin-like growth factor II permit nerve growth factor binding and the neurite formation response in cultured human neuroblastoma cells.Proc. Natl. Acad. Sci. USA 81, 2562–2566.

    Article  PubMed  CAS  Google Scholar 

  • Recio-Pinto E., Rechler M. M., and Ishii D. N. (1986) Effects of insulin, insulin-like growth factor-II, and nerve growth factor on neurite formation and survival in cultured sympathetic and sensory neurons.J. Neurosci. 6, 1211–1219.

    PubMed  CAS  Google Scholar 

  • Rosen O. M., Rubin C. S., Cobb M. H., and Smith C. J. (1981) Insulin stimulates the phosphorylation of ribosomal protein S6 in a cell free system derived from 3T3-L1 adipocytes.J. Biol. Chem. 256, 3630–3633.

    PubMed  CAS  Google Scholar 

  • Sasaki Y., Zhang X. F., Nishiyama M., Avruch J., and Wands J. R. (1993) Expression and phosphorylation of insulin receptor substrate 1 during rat liver regeneration.J. Biol. Chem. 268, 3805–3808.

    PubMed  CAS  Google Scholar 

  • Scheibel A. B. and Tomiyasu U. (1978) Dendritic sprouting in Alzheimer’s presenile dementia.Exp. Neurol. 60, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Skolnik E. Y., Margolis B., Mohammadi M., Lowenstein E., Fischer R., Drepps A., Ullrich A., and Schlessinger J. (1991) Cloning of PI-3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases.Cell 65, 83–90.

    Article  PubMed  CAS  Google Scholar 

  • Sun X. J., Rotherberg P., Kahan C., Baker J., Araki E., Wilden P., Cahill D., Goldstein B., and White M. (1991) Expression and phosphorylation of insulin receptor substrate 1 during rat liver regeneration.Nature 352, 73–77.

    Article  PubMed  CAS  Google Scholar 

  • Sung K. C., Sanchez-Margalet V., and Goldfine I. D. (1994) Role of p85 subunit of phosphatidylinositol-3-kinase as an adaptor molecule linking the insulin receptor, p62, and GTPase-activating protein.J. Biol. Chem. 269, 12,503–12,507.

    CAS  Google Scholar 

  • The I., Murthy A. E., Hannigan G. E., Jacoby L. B., Menon A. G., Gusella J. F., and Bernards A. (1993) Neurofibromatosis type 1 gene mutations in neuroblastoma.Nature Genet. 3, 62–66.

    Article  PubMed  CAS  Google Scholar 

  • Tobe K., Matuoka K., Tamemoto H., Ueki K., Kaburagi Y., Asai S., Noguchi T., Matsuda M., Tanaka S., Hattori S., Fukui Y., Akanuma Y., Yazaki Y., Takenawa T., and Kadowaki T. (1993) Insulin stimulates association of insulin receptor substrate-1 with the protein abundant Src homology/growth factor receptor-bound protein 2.J. Biol. Chem. 268, 11,167–11,171.

    CAS  Google Scholar 

  • Ullrich A., Bell J. R., Chen E. Y., Herrera R., Pertruzzelli L. M., Dull T. Y., Gray A., Coussens L., Liao Y.-C., Tsubokawa M., Mason A., Seeburg P. H., Grunfield C., Rosen O. M., and Ramachandran J. (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes.Nature 313, 756–761.

    Article  PubMed  CAS  Google Scholar 

  • Wang L.-M., Myers M. G. Jr., Sun X. J., Aaronson S. A., White M. F., and Pierce J. H. (1993) Expression of IRS-1 restores insulin and IL-4 mediated mitogenesis in haematopoietic cells.Science 261, 1591–1594.

    Article  PubMed  CAS  Google Scholar 

  • White M. F., Maron R., and Kahn C. R. (1985) Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells.Nature 318, 183–186.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski H. M., Merz P. A., and Iqbal K. (1984) Ultrastructure of paired helical filaments of Alzheimer’s neurofibrillary tangle.J. Neuropathol. Exp. Neurol. 43, 643–656.

    Article  PubMed  CAS  Google Scholar 

  • Wood K. W., Sarnecki C., Roberts T. M., and Blenis J. (1992) Ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-1 and RSK.Cell 68, 1041–1050.

    Article  PubMed  CAS  Google Scholar 

  • Xu Y.-Y., Bhavani K., Wands J. R., and de la Monte S. M. (1995) Ethanol inhibits insulin receptor substrate-1 tyrosine phosphorylation and insulin-stimulated neuronal thread protein gene expression.Biochem. J. 310, 125–132.

    PubMed  CAS  Google Scholar 

  • Xu Y.-Y., Wands J. R., and de la Monte S. M. (1993a) Characterization of thread proteins expressed in neuroectodermal tumors.Cancer Res. 53, 3823–3829.

    PubMed  CAS  Google Scholar 

  • Xu Y.-Y., Wands J. R., and de la Monte S. M. (1993b) Thread protein expression in neuroectodermal tumor cell lines of central nervous system origin.J. Neuropathol. Exp. Neurol. 52, 291 (Abstract).

    Article  Google Scholar 

  • Yamauchi K., Holt K., and Pessin J. E. (1993) Phosphatidylinositol 3-kinase functions upstream of Ras and Raf in mediating insulin stimulation of c-fos transcription.J. Biol. Chem. 268, 14,597–14,600.

    CAS  Google Scholar 

  • Yonezawa K., Ando A., Kaburagi Y., Yamatomo-Honda R., Kitamura T., Hara K., Nakafuku M., Okabayashi Y., Kadowaki T., Kaziro Y., and Kazuka M. (1994) Signal transduction pathways from insulin receptors to ras. Analysis by mutant insulin receptors.J. Biol. Chem. 269, 4634–4640.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, YY., Bhavani, K., Wands, J.R. et al. Insulin-induced differentiation and modulation of neuronal thread protein expression in primitive neuroectodermal tumor cells is linked to phosphorylation of insulin receptor substrate-1. J Mol Neurosci 6, 91–108 (1995). https://doi.org/10.1007/BF02736769

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736769

Index Entries

Navigation