Skip to main content
Log in

Subcellular interactions between parallel fibre and climbing fibre signals in purkinje cells predict sensitivity of classical conditioning to interstimulus interval

  • Papers
  • Published:
Integrative Physiological & Behavioral Science Aims and scope Submit manuscript

Abstract

Classical conditioning of the nictitating membrane response requires a specific temporal interval between conditioned stimulus and unconditioned stimulus, and produces an incrase in Protein Kinase C (PKC) activation in Purkinje cells. To evaluate whether biochemical interactions within the Purkinje cell may explain the temporal sensitivity, a model of PKC activation byCa 2+, diacylglycerol (DAG), and arachidonic acid (AA) is developed.Ca 2+ elevation is due to CF stimulation and IP3 inducedCa 2+ release (IICR). DAG andIP 3 result from PF stimulation, while AA results from phospholipase A2 (PLA 2). Simulations predict increased PKC activation when PF stimulation precedes CF stimulation by 0.1 to 3 s. The sensitivity of IICR to the temporal relation between PF and CF stimulation, together with the buffering system of Purkinje cells, significantly contribute to the temporal sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allbritton, N. L., Meyer, T., & Stryer, L. (1992). Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate.Science, 258, 1812–1815.

    Article  PubMed  Google Scholar 

  • Berthier, N. E. & Moore, J. W. (1986). Cerebellar purkinje cell activity related to the classically conditioned nictitating membrane response.Exp Brain Res, 63, 341–350.

    Article  PubMed  Google Scholar 

  • Bhalla, U. S. (2000). Temporal pattern decoding by synaptic signaling pathways.Soc., for Neurosci. Abstr, 26, 1903.

    Google Scholar 

  • Bhalla, U. S. & Iyengar, R. (1999). Emergent properties of networks of biological signaling pathays.Science 283, 381–387.

    Article  PubMed  Google Scholar 

  • Bramham, C. R., Alkon, D. L., & Lester, D. S. (1994). Arachidonic acid and diacylglycerol act synergistically through protein kinase C to persistently enhance synaptic transmission in the hippocampus.Neuroscience, 60, 734–743.

    Article  Google Scholar 

  • Bredt, D.S., Hwang, P. M., & Snyder, S. H. (1990). Localization of nitric oxide synthase indicating a neural role for nitric oxide.Nature, 347, 768–770.

    Article  PubMed  Google Scholar 

  • Brown, I. E. & Bower, J. M. (2001). Congruence of mossy fiber and climbing fiber tactile projections in the lateral hemispheres of the rat cerebellum.J. Comp. Neurol, 429, 59–70.

    Article  PubMed  Google Scholar 

  • Callaway, J. C., Lasser-Ross, N., & Ross, W. N. (1995). IPSPs strongly inhibit climbing fiberactivated [Ca 2+ji increases in the dendrites of cerebellar Purkinje neurons.J. Neurosci, 15, 2777–2787.

    PubMed  Google Scholar 

  • Canepari, M., Papageorgiou, G., Corrie, J. E., Watkins, C., & Ogden, D. (2001). The conductance underlying the parallel fibre slow epsp in rat cerebellar purkinje neurones studied with photolytic release of I-glutamate.J. Physiol, 533, 765–72.

    Article  PubMed  Google Scholar 

  • Chen, C. & Thompson, R. F. (1995). Temporal specificity of long-term depression in parallel fiber-purkinje synapses in rat cerebellar slice.Learning and Memory, 2 185–198.

    Article  PubMed  Google Scholar 

  • Daniel, H., Levenes, C., & Crepel, F. (1998). Cellular mechanisms of cerebellar LTD.Trends in Neurosciences, 21, 401–407.

    Article  PubMed  Google Scholar 

  • De Schutter, E. & Bower, J. M. (1994). An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice.J. Neurophysiol 71, 375–400.

    PubMed  Google Scholar 

  • Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1994). Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism.J Comput Neurosci, 1, 195–230.

    Article  PubMed  Google Scholar 

  • Ekerot, C. F. & Kano, M. (1989). Stimulation parameters influencing climbing fibre induced long-term depression of parallel fibre synapses.Neurosci. Res, 6 264–268.

    Article  PubMed  Google Scholar 

  • Fiala, J. C., Grossberg, S., & Bullock, D. (1996). Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response.J. Neurosci, 16, 3760–3774.

    PubMed  Google Scholar 

  • Finch, E. A. & Augustine, G. J. (1998). Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites.Nature, 396, 753–756.

    Article  PubMed  Google Scholar 

  • Freeman jr, J. H., Schaarenberg, A. M., Olds, J. L., & Schreurs, B. G. (1998). Classical conditioning increases membrane-bound protein kinase C in rabbit cerebellum.NeuroReport, 9, 2237–2241.

    Article  PubMed  Google Scholar 

  • Freeman Jr, J. H., Shi, T., & Schreurs, B. G. (1998). Pairing-specific long-term depression prevented by blockade of PKC or intracellularCa 2+.NeuroReport, 9, 2237–2241.

    Article  PubMed  Google Scholar 

  • Gormezano, I., Kehoe, E. J., & Marshall, B. S. (1983). Twenty years of classical conditioning research with the rabbit.Prog Psychobiol and Physiol Psych, 10, 197–275.

    Google Scholar 

  • Goto, K. & Kondo, H. (1999). Diacylglycerol kinase in the central nervous system-molecular heterogeneity and gene expression.Chem Phys Lipids, 98, 109–117.

    Article  PubMed  Google Scholar 

  • Gould, T. J. & Steinmetz, J. E. (1996). Changes in rabbit cerebellar cortical and interpositus nucleus activity during acquisition, extinction, and backward classical eyelid conditioning.Neurobiology of Learning and Memory, 65, 17–34.

    Article  PubMed  Google Scholar 

  • Green, J. T. & Woodruff-Pak, D. S. (2000). Eyeblink classical conditioning: hippocampal formation is for neutral stimulus associations as cerebellum is for association-response.Psychol Bull, 126, 138–158.

    Article  PubMed  Google Scholar 

  • Gruart, A., Guillazo-Blanch, G., Fernandez-Mas, R., Jimenez-Diaz, L., & Delgado-Garcia, J. M. (2000). Cerebellar posterior interpositus nucleus as an enhancer of classically conditioned eyelid responses in alert cats.J. Neurophysiol, 84, 2680–90.

    PubMed  Google Scholar 

  • Gunduppa-Sulur, G., De Schutter, E., & Bower, J. M. (1999). Ascending granule cell axon: an important component of cerebellar cortical circuitry.J. Comp. Neur, 408, 580–596.

    Article  Google Scholar 

  • Hartell, N. A. (1996). Strong activation of parallel fibers produces localized calcium transients and a form of LTD that spreads to distant synapses.Neuron, 16, 601–610.

    Article  PubMed  Google Scholar 

  • Hemart, N., Daniel, H., Jaillard, D., & Crepel, F. (1995). Receptors and second messengers involved in longterm depression in rat cerebellar slices in vitro: a reappraisal.Eur. J. Neurosci, 7, 45–53.

    Article  PubMed  Google Scholar 

  • Hirono, M., Konishi, S., & Yoshioka, T. (1998). Phospholipase C-independent group I metabotropic glutamate receptor-mediated inward current in mouse purkinje cells.Biochem Biophys Res Commun, 251, 753–8.

    Article  PubMed  Google Scholar 

  • Hirono, M., Sugiyama, T., Kishimoto, Y., Sakai, I., Miyazawa, T., Kishio, M., Inoue, H., Nakao, K., Ikeda, M., Kawahara, S., Kirino, Y., Katsuki, M., Horie, H., Ishikawa, Y., & Yoshioka, T. (2001). Phospholipase cbeta4 and protein kinase calpha and/or protein kinase cbetai are involved in the induction of long term depression in cerebellar purkinje cells.J Biol Chem, 276, 45236–42.

    Article  PubMed  Google Scholar 

  • Holmes, W. R. (2000). Models of calmodulin trapping and CaM kinase I activation in a dendritic spine.J. Comput. Neurosci, 8, 65–85.

    Article  PubMed  Google Scholar 

  • Ivkovich, D., Paczkowski, C. M., & Stanton, M. E. (2000). Ontogeny of delay versus trace eyeblink conditioning in the rat.Dev Psychobiol, 36, 148–60.

    Article  PubMed  Google Scholar 

  • Jafri, M. S. & Keizer, J. (1997). Agonist-induced calcium waves in oscillatory cells: a biological example of Burgers' equation.Bull Math Biol, 59, 1125–1144.

    Article  PubMed  Google Scholar 

  • Kaftan, E. J., Ehrlich, B. E., & Watras, J. (1997). Inositol 1,4,5-trisphosphate (insp3) and calcium interact to increase the dynamic range of insp3 receptor-dependent calcium signaling.J Gen Physiol, 110, 529–538.

    Article  PubMed  Google Scholar 

  • Kano, M., Garaschuk, O., Verkhratsky, A., & Konnerth, A. (1995). Ryanodine receptormediated intracellular calcium release in rat cerebellar purkinje neurones.J. Physiol. 487, 1–16.

    PubMed  Google Scholar 

  • Karachot, L., Kado, R. T., & Ito M. (1994). Stimulus parameters for induction of long-term depression in in vitro rat Purkinje cells.Neurosci. Res, 21, 161–168.

    Article  PubMed  Google Scholar 

  • Katz, D. B. & Steinmetz, J. E. (1997). Single-unit evidence for eye-blink conditioning in cerebellar cortex is altered, but not eliminated, by interpositus nucleus lesions.Learn Mem, 4, 88–104.

    Article  PubMed  Google Scholar 

  • Kawasaki, H., Fujii, H., Gotoh, Y., Shimohama, S., Nishida, E., & Hirano, T. (1999). Requirement for mitogen-activated protein kinase in cerebellar long term depression.J Biol Chem, 487, 13498–13502.

    Article  Google Scholar 

  • Khodakhah, K. & Ogden, D. (1995). Fast activation and inactivation of inositol trisphosphate evokedCa 2+ release in rat cerebellar Purkinje neurones.J. Physiol., 487, 343–358.

    PubMed  Google Scholar 

  • Kuroda, S., Schweighofer, N., & Kawato, M. (2001). Exploration of signal transduction pathways in cerebellar long-term depression by kinetic simulation.J. Neurosci, 21, 5693–702.

    PubMed  Google Scholar 

  • Lang, E. J., Sugihara, I., Welsh, J. P., & Llinas, R. (1999). Patterns of spontaneous Purkinje cell complex activity in the awake rat.J Neurosci., 1, 2728–2739.

    Google Scholar 

  • Leslie, C. C. & Channon, J. Y. (1990). Anionic phospholipids stimulate an arachidonoyl-hydrolyzing phospholipase A2 from macrophages and reduce the calcium requirement for activity.Biochimica et Biophysica Acta, 1045, 261–270.

    PubMed  Google Scholar 

  • Lester, D. S. & Bramham, C. R. (1993). Persistent, membrane-associated protein kinase C: from model membranes to synaptic long-term potentiation.Cell Signal, 5, 695–708.

    Article  PubMed  Google Scholar 

  • Levenes, C., Daniel, H., & Crepel, F. (1998). Long-term depression of synaptic transmission in the cerebellum: cellular and molecular mechanisms revisited.Progress in Neurobiology, 55, 79–91.

    Article  PubMed  Google Scholar 

  • Li, Y.-X. & Rinzel, J. (1994). Equations for InsP3 receptor—mediated [Ca 2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism.J. Theor. Biol, 166, 461–473.

    Article  PubMed  Google Scholar 

  • Linden, D. J. (1995). Phospholipase A2 controls the induction of short-term versus long-term depression in the cerebellar Purkinje neuron in culture.Neuron, 15, 1393–1401.

    Article  PubMed  Google Scholar 

  • Lüscher, C., Nicoll, R. A., Malenka, R. C., & Muller, D. (2000). Synaptic plasticity and dynamic modulation of the postsynaptic membrane.Nat Neurosci, 3, 545–550.

    Article  PubMed  Google Scholar 

  • Maeda, H., Ellis-Davies, G. C., Ito, K., Miyashita, Y., & Kasai, H. (1999). SupralinearCa 2+ signaling by cooperative and mobileCa 2+ buffering in purkinje neurons.Neuron, 24, 989–1002.

    Article  PubMed  Google Scholar 

  • Marty, A. & Llano, I. (1995). Modulation of inhibitory synapses in the mammalian brain.Curr Opin Neurobiol, 5, 335–41.

    Article  PubMed  Google Scholar 

  • McCormick, D. A. & Thompson, R. F. (1984). Cerebellum: Essential involvement in the classically conditioned eyelid response.Science, 223, 296–299.

    Article  PubMed  Google Scholar 

  • Medina, J. F., Garcia, K. S., Nores, W. L., Taylor, N. M., & Mauk, M. D. (2000). Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation.Neurosci, 41, 5516–5525.

    Google Scholar 

  • Medina, J. F. & Mauk, M. D. (2000). Computer simulation of cerebellar information processing.Nat Neurosci, 3, 1205–1211.

    Article  PubMed  Google Scholar 

  • Midtgaard, J. (1995). Spatial synaptic integration in purkinje cell dendrites.J. Physiol Paris, 89, 23–32.

    Article  PubMed  Google Scholar 

  • Miyakawa, H., Lev-Ram, V., Lasser-Ross, N., & Ross, W. N. (1992). Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons.J. Neurophysiol., 68, 1178–1189.

    PubMed  Google Scholar 

  • Miyata, M., Finch, E. A., Khiroug, L., Hashimoto, K., Hayasaka, S., Oda, S. I. Inouye, M., Takagishi, Y., Augustine, G. J., & Kano, M. (2000). Local calcium release in dendritic spines required for long-term synaptic depression.Neuron, 28, 233–244.

    Article  PubMed  Google Scholar 

  • Mukhopadhyay, S., & Ross, E. M. (1999). Rapid GTP binding and hydrolysis by G(q) promoted by receptor and GTPase-activating proteins.Proc. Natl. Acad. Sci., 96, 9539–9544.

    Article  PubMed  Google Scholar 

  • Nakamura, T., Barbara, J.-G., Nakamura, K., & Ross, W. N. (1999). Synergistics release ofCa 2+ fromIP 3-sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials.Neuron, 24, 727–737.

    Article  PubMed  Google Scholar 

  • Narasimhan, K., Pessah, I. N., & Linden, D. J. (1998). Inositol-1,4,5-trisphosphate receptor mediated Ca mobilization is not required for cerebellar long-term depression in reduced preparationsJ Neurophysiol, 80, 2963–2974.

    PubMed  Google Scholar 

  • Netzeband, J. G., Parsons, K. L., Sweeney, D. D., & Gruol, D. L. (1997). Metabotropic glutamate receptor agonists, alter neuronal excitability and ca2+levels via the phospholipase c transduction pathway in cultured purkinje neurons.J Neurophysiol, 78, 63–75.

    PubMed  Google Scholar 

  • Oancea, E., & Meyer, T. (1998). Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals.Cell, 95, 307–318.

    Article  PubMed  Google Scholar 

  • Pete, M. J., & Exton, J. H. (1996). Purification of a lysophospholipase from bovine brain that, selectively decaylates arachidonyl-substituted lysophosphatidyl-choline.J. Biol. Chemistry, 271, 18114–18121.

    Article  Google Scholar 

  • Petit, K., De Block, J., & De Potter, W. (1995). Isolation and characterization of a cytosolic phospholipase A2 from bovine adrenal medulla.J. Neurochemistry, 41, 139–146.

    Google Scholar 

  • Qiu, Z.-H. & Leslie, C. C. (1994). Protein kinase C-dependent and-independent pathways of mitogen-activated protein kinase activation in macrophages by stimuli that activate phospholipase A2.J. Biol. Chem., 269, 19480–19487.

    PubMed  Google Scholar 

  • Reynolds, T., & Hartell, N. A. (2001). Roles for nitric oxide and arachidonic acid in the induction of heterosynaptic cerebellar LTD.Neuroreport, 12, 133–136.

    Article  PubMed  Google Scholar 

  • Ryon, J. W., Cho, S. Y., & Kim, H. T. (2001). Lesions of the entorhinal cortex impair acquisition of hippocampal-dependent trace conditioning.Neurobiol Learn Mem, 75, 121–7.

    Article  Google Scholar 

  • Sabatini, B. L., Maravall, M., & Svoboda, K. (2001). Ca2+ signaling in dendritic spines.Current Opinion in Neurobiology, 11, 349–356.

    Article  PubMed  Google Scholar 

  • Schacter, J. B., Lester, D. S., & Alkon, D. L. (1996). Synergistic activation of protein kinase C by arachidonic acid and diacylglycerol in vitro: generation of a stable membrane-bound, cofactor—independent state of protein kinase C activity.Biochimica et Biophysica Acta, 1291, 167–176.

    Google Scholar 

  • Schreurs, B. G. & Alkon, D. L. (1993). Rabbit cerebellar slice analysis of long-term depression and its role in classical conditioning.Brain Res, 631, 235–240.

    Article  PubMed  Google Scholar 

  • Schreurs, B. G., Oh, M. M., & Alkon, D. L. (1996). Pairing-specific long-term depression of Purkinje cell excitatory postsynaptic potentials results from a classical conditioning procedure in the rabbit cerebellar slice.J. Neurophysiol, 75, 1051–1060.

    PubMed  Google Scholar 

  • Schreurs, B. G., Tomsic, D., Gusev, P. A., & Alkon, D. L. (1997). Dendritic excitability microzones and occluded long-term depression after classical conditioning of the rabbit's nictitating membrane response.J. Neurophysiol, 77, 86–92.

    PubMed  Google Scholar 

  • Shinomura, T., Asaoka, Y., Oka, M., Yoshida, K., & Nishizuka, Y. (1991). Synergistic action of diacylglycerol and unsaturated fatty acid for protein kinase C activation: its possible implication.Proc. Natl. Acad. Sci., 88, 5149–5153.

    Article  PubMed  Google Scholar 

  • Shirai, Y., Kashiwagi, K., Yagi, K., Sakai, N., & Saito, N. (1998). Distinct effects of fatty acids on translocation of gamma—and epsilon-subspieces of protein kinase C.J. Cell Biol, 143, 511–521.

    Article  PubMed  Google Scholar 

  • Shirai, Y., Sakai, N., & Satir, N. (1998). Subspieces-specific targeting mechanism of protein kinase C.Jpn. J. Pharmacol, 78, 411–117.

    Article  PubMed  Google Scholar 

  • Smrcka, A. V., Hepler, J. R., Brown, K. O., & Sternweis, P. C. (1991). Regulation of polyphosphoinostitide-specific phospholipase C activity by purified Gq.Science, 251, 804–807.

    Article  PubMed  Google Scholar 

  • Southam, E., Morris, R., & Garthwaite, J. (1992). Sources and targets of nitric oxide in rat cerebellum.Neurosci Lett, 137, 241–244.

    Article  PubMed  Google Scholar 

  • Stanton, M. E. (2000). Multiple memory systems, development and conditioning.Behav Brain Res, 110, 25–37.

    Article  PubMed  Google Scholar 

  • Steinmetz, J. E. (2000). Brain substrates of classical eyeblink conditioning: a highly localized but also distributed system.Behav Brain Res, 110, 13–24.

    Article  PubMed  Google Scholar 

  • Stella, N., Pellerin, L., & Magistretti, B. J. (1995). Modulation of the glut amate-evoked release of arachidonic acid from mouse cortical neurons: involvement of a pH sensitive membrane phospholipase A2.J. Neurosci, 15, 3307–3317.

    PubMed  Google Scholar 

  • Striggow, F. & Ehrlich, B. E. (1997). Regulation of intracellular calcium release channel function by arachidonic acid and leukotriene B4.Biochern Biophys Res Commun, 237, 413–418.

    Article  Google Scholar 

  • Takechi, H., Eilers, J., & Konnerth, A. (1998). A new class of synaptic response involving calcium release in dendritic spines.Nature, 396, 757–760.

    Article  PubMed  Google Scholar 

  • Tempia, F., Miniaci, C., Anchisi, D., & Strata, P. (1998). Postsynaptic current mediated by metabotropic glutamate receptors in cerebellar Purkinje cells.J. Neurophysiol, 80, 520–528.

    PubMed  Google Scholar 

  • Thompson, R. F. (1986). The neurobiology of learning and memory.Science, 233, 941–947.

    Article  PubMed  Google Scholar 

  • Thompson, R. F., & Kim, J. J. (1996). Memory systems in the brain and localization of a memory.Proc. Natl. Acad. Sci. 93, 13438–13444.

    Article  PubMed  Google Scholar 

  • Thompson, R. F., & Krupa, D. J. (1994). Organization of memory traces in the mammalian brain.Ann. Rev. Neurosci., 17, 519–549.

    Article  PubMed  Google Scholar 

  • Wang, S. S., Alousi, A. A., & Thompson, S. H. (1995). The lifetime of inositol 1,4,5-trisphosphate in single cells.J Gen Physiol, 105, 149–171.

    Article  PubMed  Google Scholar 

  • Wang, S. S.-H., Denk, W., & Hausser, M. (2000). Coincidence detection in single dendritic spines mediated by calcium release.Nat Neurosci 3, 1266–1273.

    Article  PubMed  Google Scholar 

  • Wang, Y. T. & Linden, D. J. (2000). Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis.Neuron, 25, 635–647.

    Article  PubMed  Google Scholar 

  • Watras, J., Bezprozvanny, I., & Ehrlich, B. E. (1991). Inositol 1,4,5-trisphosphate-gated channels in cerebellum: presence of multiple conductance states.J. Neurosci, 1 3239–45.

    Google Scholar 

  • Watras, J., Orlando, R., & Moraru, I. I. (2000). An endogenous sulfated inhibitor of neuronal inositol trisphosphate receptors.Biochemistry, 39, 3452–60.

    Article  PubMed  Google Scholar 

  • Woodruff-Pak, D. S., Lavond, D. G., & Thompson, R. F. (1985). Trace conditioning: abolished by cerebelar nuclear lesions but not lateral cerebellar cortex aspiration.Brain Res., 348, 249–260.

    Article  PubMed  Google Scholar 

  • Yang, K., Hellgren Kotaleski, J., & Blackwell, K. T. (2000). The role of protein kinase C in the temporal specificity of purkinje cells.Soc. Neurosci. Abstr, 26, 718.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanette Hellgren Kotaleski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotaleski, J.H., Lester, D. & Blackwell, K.T. Subcellular interactions between parallel fibre and climbing fibre signals in purkinje cells predict sensitivity of classical conditioning to interstimulus interval. Integrative Physiological & Behavioral Science 37, 265–292 (2002). https://doi.org/10.1007/BF02734249

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02734249

Keywords

Navigation