Skip to main content
Log in

An unified theory of direct reactions

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

A new dispersion theory of nuclear reactions is presented which is a generalization of the existing ones. The theory is centered around the possibility of defining a class of problems equivalent to the original scattering problem in the sense that their solutions all determine the same transition matrix elements. These equivalent problems are generated by suitably projecting the original one on a subspace of the linear space spanned by the continuum eigenstates of the total Hamiltonian, containing the initial and final channel states. A derivation of the Breit-Wigner formula analogous to Feshbach’s can be given in our theory, independently of any configuration space representation. The direct processes are then defined by performing the energy average on the transition matrix elements, so that the contributions from the long-lived « compound » states are lost. In the case of nucleon-nucleus scattering this is shown to give an alternative definition of the optical model quite analogous to the conventional ones though perhaps more accessible to a field theoretical analysis. Moreover it is shown that the well known surface contributions to direct reactions can be isolated quite naturally in our formalism from the other direct contributions.

Riassunto

Viene presentata una teoria a dispersione delle reazioni nucleari che è una generalizzazione di quelle esistenti. La teoria è centrata attorno alla possibilità di definire una classe di problemi equivalenti all’originario problema di scattering nel senso che le loro soluzioni determinano tutte gli stessi elementi di matrice di transizione. Questi problemi equivalenti sono generati proiettando opportunamente quello originario su un sottospazio dello spazio lineare definito dagli autostati del continuo dell’hamiltoniana totale, che include gli stati di canale iniziali e finali. Una derivazione della formula di Breit-Wigner analoga a quella di Feshbach può essere data nella nostra teoria. I processi diretti vengono definiti mediando rispetto all’energia gli elementi di matrice di transizione, in modo che risultino eliminati i contributi dovuti agli stati « composti » di vita media lunga. Nel caso dello scattering nucleone-nucleo si ottiene in tal modo una definizione del modello ottico che, sebbene del tutto analoga a quelle convenzionali, però sembra più facilmente analizzabile con metodi di teoria dei campi. Viene altresì mostrato che i ben noti contributi di superficie alle reazioni dirette possono essere isolati in modo del tutto « naturale » dagli altri contributi diretti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Weisskopf:Physica,22, 952 (1956);D. H. Wilkinson:Physica,22, 1039 (1956);C. T. De Dominicis:Compt. Rend. Congrés Intern. Physique Nucl. (Paris, 1958), p. 87;R. E. Peierls:Lectures at the Summer Institute for Theor. Phys. (University of Colorado, Boulder, 1958).

    Article  ADS  Google Scholar 

  2. A. Agodi, E. Eberle andL. Sertorio:Nuovo Cimento,13, 1279 (1959).

    Article  Google Scholar 

  3. R. G. Thomas:Phys. Rev.,97, 224 (1955);100, 25 (1955);C. Bloch:Nucl. Phys.,4, 503 (1957);T. Teichman andE. P. Wigner:Phys. Rev.,87, 123 (1952);A. M. Lane andR. G. Thomas:Rev. Mod. Phys.,30, 257 (1958);G. E. Brown andC. T. De Dominicis:Proc. Phys. Soc., A70, 668 (1957).

    Article  ADS  MATH  Google Scholar 

  4. G. E. Brown andC. T. De Dominicis,Proc. Phys Soc., A70, 686 (1957);G. E. Brown:Rev. Mod. Phys.,31, 893 (1959).

    Article  ADS  Google Scholar 

  5. A. Agodi:Suppl. Nuovo Cimento,11, 431 (1959).

    Google Scholar 

  6. E. P. Wigner andL. Eisenbud:Phys. Rev.,72, 29 (1947).

    Article  ADS  Google Scholar 

  7. P. I. Kapur andR. E. Peierls:Proc. Roy. Soc., A166, 277 (1937).

    ADS  Google Scholar 

  8. H. Feshbach:Ann. Phys.,5, 357 (1958); see also:A. M. Lane:Nucl. Phys.,11, 625 (1959);G. E. Brown quoted under (4) andA. M. Lane andR. G. Thomas quoted under (3).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. H. Ekstein:Phys. Rev.,101, 880 (1956);J. M. Jauch:Helv. Phys. Acta,31, 127 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. R. E. Peierls:Proc. Glasgow Conf. on Nucl. and Meson Physics (1954), p. 296;P. J. Matthews andA. Salam:Phys. Rev.,112, 283 (1958);B. Zumino: New York University Res. Rep. CX-23 (1956), unpublished;J. Schwinger:Ann. Phys.,9, 169 (1960).

  11. H. Feshbach: quoted under (8).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. H. Feshbach:Ann. Rev. Nucl. Sci.,8, 49 (1958).

    Article  ADS  Google Scholar 

  13. F. L. Friedman andV. F. Weisskopf:Niels Bohr and the Development of Physics (London, 1955), p. 134;C. T. De Dominicis:Journ. Phys. Rad.,19, 1 (1958).

  14. S. T. Butler:Phys. Rev.,106, 272 (1957);P. Gugelot:Phys. Rev.,93, 424 (1954);G. E. Brown andJ. S. Levinger:Proc. Phys. Soc., A71, 733 (1958);B. L. Cohen andA. G. Rubin:Phys. Rev.,114, 1143 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. J. M. Jauch:Helv. Phys. Acta,31, 661 (1958).

    MathSciNet  MATH  Google Scholar 

  16. B. Lippmann andJ. Schwinger:Phys. Rev.,79, 469 (1950);M. Gell-Mann andM. L. Goldberger:Phys. Rev.,91, 398 (1953);H. E. Moses:Nuovo Cimento,1, 103 (1955);B. Zumino quoted under (10).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. J. M. Jauch quoted under (9).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. N. I. Achieser andI. M. Glasmann:Theorie der linearen Operatoren im Hilbert Raum (Berlin, 1954);F. Riesz andB. de Sz. Nagy:Leçons d’analyse fonctionelle (Budapest, 1952).

  19. U. Fano:Rev. Mod. Phys.,29, 76 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  20. U. Fano andG. Racah:Irreducible Tensorial Sets (New York, 1959).

  21. The papers quoted under (13);H. Feshbach, C. Porter andV. Weisskopf:Phys. Rev.,96, 448 (1954).

    Google Scholar 

  22. E. P. Wigner:Proc. Camb. Phil. Soc.,47, 790 (1951);Ann. Math.,53, 36 (1951);55, 7 (1952);E. P. Wigner andJ. v. Neumann:Ann. Math.,59, 418 (1954).

    Article  ADS  MATH  Google Scholar 

  23. Seee.g. G. F. Chew andF. E. Low:Phys. Rev.,113, 1640 (1959);M. Cini andS. Fubini:Ann. Phys. 10, 352, (1960).

    Article  ADS  MATH  Google Scholar 

  24. S. T. Butler quoted under (14);N. Austern, S. T. Butler andH. McManus:Phys. Rev.,92, 350 (1953).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. A. M. Lane quoted under (8);A. M. Lane andJ. E. Lynn:Nucl. Phys.,11, 646 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been supported in part by a grant of « Fondazione A. Della Riccia » during this author’s stay at C.E.N., Saclay, France, and in part by C.R.R.N., Palermo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agodi, A., Eberle, E. An unified theory of direct reactions. Nuovo Cim 18, 718–743 (1960). https://doi.org/10.1007/BF02732828

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02732828

Navigation