Skip to main content
Log in

Finite-energy current algebra sum rules

Правила сумм алгебры токов при конечных знергиях

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

Using the finite-contour method we derive the Adler-Weisberger relation in the form

$$\frac{1}{{f_\pi ^2 }}\left( {1 - \frac{{g_A^2 }}{{g_V^2 }}} \right) = \frac{2}{\pi }\int\limits_{2m_\pi (m_p + m_\pi /2}^N {\tfrac{{dv}}{{v^2 }}\left( {\sigma _{\pi ^ - p}^{t_0 t} (v) - \sigma _{\pi ^ - p}^{t_0 t} (v)} \right)2m_p p_\pi ^{lab} + \frac{1}{{2\pi i}}\oint\limits_{C_N } {dv\frac{{T_{\pi ^ - p} (v) - T_{\pi ^ + p} (v)}}{{v^2 }}} } $$

whereC N is a circle of radiusN in the complexν-plane. A similar technique yields a sum rule from the charge-current divergence commutator. The sum rules are evaluated by means of Regge models with «unconventional» asymptotic behaviour. Models with weak nonabsorptive cuts are not favoured.

Riassunto

Facendo uso del metodo del contorno finito si deduce la relazione di Adler-Weisberger nella forma

$$\frac{1}{{f_\pi ^2 }}\left( {1 - \frac{{g_A^2 }}{{g_V^2 }}} \right) = \frac{2}{\pi }\int\limits_{2m_\pi (m_p + m_\pi /2}^N {\tfrac{{dv}}{{v^2 }}\left( {\sigma _{\pi ^ - p}^{t_0 t} (v) - \sigma _{\pi ^ - p}^{t_0 t} (v)} \right)2m_p p_\pi ^{lab} + \frac{1}{{2\pi i}}\oint\limits_{C_N } {dv\frac{{T_{\pi ^ - p} (v) - T_{\pi ^ + p} (v)}}{{v^2 }}} } $$

in cuiC N è un circolo di raggioN nel pianov complesso. Una tecnica simile dà una regola di somma dal commutatore della divergenza carica-corrente. Si valutano le regole di somma per mezzo di modelli di Regge con comportamento asintotico non convenzionale. I modelli con tagli deboli non assorbenti non sono favoriti.

Реэюме

Испольэуя метод конечного контура, мы выводим соотнощение Адлера-Вейсбергера в форме

$$\frac{1}{{f_\pi ^2 }}\left( {1 - \frac{{g_A^2 }}{{g_V^2 }}} \right) = \frac{2}{\pi }\int\limits_{2m_\pi (m_p + m_\pi /2}^N {\tfrac{{dv}}{{v^2 }}\left( {\sigma _{\pi ^ - p}^{t_0 t} (v) - \sigma _{\pi ^ - p}^{t_0 t} (v)} \right)2m_p p_\pi ^{lab} + \frac{1}{{2\pi i}}\oint\limits_{C_N } {dv\frac{{T_{\pi ^ - p} (v) - T_{\pi ^ + p} (v)}}{{v^2 }}} } $$

гдеC N представляет радиус кругаN в комплекснойν плоскости. Аналогичная техника дает правило сумм иэ коммутатора дивергенции эаряженного тока. Эти правила сумм вычисляются с помошью модели Редже с «нестандартным» асимптотическим поведением. Модели со слабыми неабсорбционными раэреэами не являются предпочтительными.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. S. L. Adler:Phys. Rev. Lett.,14, 1051 (1965);W. I. Weisberger:Phys. Rev. Lett.,14, 1047 (1965).

    Article  ADS  MATH  Google Scholar 

  2. J. V. Allaby, Yu. B. Bushnin, S. P. Denisov, A. N. Diddens, R. W. Dobinson, S. V. Donskov, G. Giacomelli, Yu. P. Gorin, A. Klovning, A. I. Petrukhin, Yu. D. Prokoshkin, R. S. Shuvalov, C. A. Stahlbrand andD. A. Stoyanova:Phys. Lett.,30 B, 500 (1969).

    Article  ADS  Google Scholar 

  3. R. L. Thews:Nuovo Cimento,68 A, 497 (1970).

    Article  ADS  Google Scholar 

  4. A. Logunov, L. D. Soloviev andA. N. Tavkhelidze:Phys. Lett.,24 B, 181 (1967);K. Igi andS. Matsuda:Phys. Rev. Lett.,18, 625 (1967).

    Article  ADS  Google Scholar 

  5. G. Giacomelli, P. Pini andS. Stagni: Report CERN-HERA 69-1 (1969).

  6. V. Barger andR. J. N. Phillips:Phys. Rev. Lett.,24, 291 (1970).

    Article  ADS  Google Scholar 

  7. V. Barger andR. J. N. Phillips:Phys. Lett.,31 B, 643 (1970).

    Article  ADS  Google Scholar 

  8. A. D. Martin andR. Wit:Nucl. Phys.,25 B, 85 (1971).

    Article  ADS  Google Scholar 

  9. R. Dolen, D. Horn andC. Schmid:Phys. Rev.,166, 1768 (1968).

    Article  ADS  Google Scholar 

  10. B. Renner:Current Algebras and Their Applications (London, 1968).

  11. M. Gell-Mann, R. J. Oakes andB. Renner:Phys. Rev.,175, 2195 (1968).

    Article  ADS  Google Scholar 

  12. F. Von Hippel andJ. K. Kim:Phys. Rev. D,1, 151 (1970). For a discussion on why one might expect to see this analysis modified, seee.g.,J. Ellis:Phys. Lett.,33 B, 591 (1970);H. Kleinert, F. Steiner andP. H. Weisz:Phys. Lett., to be published (1971).

    Article  ADS  Google Scholar 

  13. T. P. Cheng andR. Dashen: Princeton Institute for Advanced Study Preprint (1971).

  14. Mainly data from, for example,K. J. Foley, R. S. Jones, S. J. Lindenbaum, W. A. Love, S. Ozaki, E. D. Platner, C. A. Quarles andE. H. Willen:Phys. Rev. Lett.,19, 193 (1967);A. A. Carter: Report RHEL-H32 (1968);A. Citron, W. Galbraith, T. F. Kycia, B. A. Leontic, R. H. Phillips, A. Rousset andP. H. Sharp:Phys. Rev.,144, 1101 (1966).

    Article  ADS  Google Scholar 

  15. We have not studied the proposal (D. Horn:Phys. Lett.,31 B, 30 (1970)) that the difference between π±p total cross-sections may tend asymptotically to a nonzero constant. Evaluations of the finite-contour integrals in this case require expressions for the real parts of the π±p elastic amplitudes, which are not available.

    Article  MathSciNet  ADS  Google Scholar 

  16. Particle Data Group:Phys. Lett.,33 B, 1 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, J., Weisz, P.H. Finite-energy current algebra sum rules. Nuov Cim A 4, 873–882 (1971). https://doi.org/10.1007/BF02731524

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02731524

Navigation