Skip to main content
Log in

K-selection, α-selection, effectiveness, and tolerance in competition: Density-dependent selection revisited

  • Published:
Journal of Genetics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In theDrosophila literature, selection for faster development and selection for adapting to high density are often confounded, leading, for example, to the expectation that selection for faster development should also lead to higher competitive ability. At the same time, results from experimental studies on evolution at high density do not agree with many of the predictions from classical density-dependent selection theory. We put together a number of theoretical and empirical results from the literature, and some new experimental results onDrosophila populations successfully subjected to selection for faster development, to argue for a broader interpretation of density-dependent selection. We show that incorporating notions of α-selection, and the division of competitive ability into effectiveness and tolerance components, into the concept of density-dependent selection yields a formulation that allows for a better understanding of the empirical results. We also use this broader formulation to predict that selection for faster development inDrosophila should, in fact, lead to the correlated evolution of decreased competitive ability, even though it does lead to the evolution of greater efficiency and higher population growth rates at high density when in monotypic culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson W. W. 1971 Genetic equilibrium and population growth under density-dependent selection.Am. Nat. 105, 489–498.

    Article  Google Scholar 

  • Anderson W. W. and Arnold J. 1983 Density-regulated selection with genotypic interactions.Am. Nat. 121, 649–655.

    Article  Google Scholar 

  • Asmussen M. A. 1983 Density-dependent selection incorporating intraspecific competition. II. A diploid model.Genetics 103, 335–350.

    PubMed  CAS  Google Scholar 

  • Atkinson W. D. 1979 A field investigation of larval competition in domesticDrosophila.J. Anim. Ecol. 48, 91–102.

    Article  Google Scholar 

  • Begon M. E., Harper J. L. and Townsend C. R. 1991Ecology: individuals, populations and communities. Blackwell Scientific, Oxford.

    Google Scholar 

  • Bell G. 1997Selection: the mechanism of evolution. Chapman and Hall, New York.

    Google Scholar 

  • Borash D. J. and Shimada M. 2001 Genetics of larval urea and ammonia tolerance and cross-tolerance inDrosophila melanogaster.Heredity 86, 658–667.

    Article  PubMed  CAS  Google Scholar 

  • Borash D. J., Gibbs A. G., Joshi A. and Mueller L. D. 1998 A genetic polymorphism maintained by natural selection in a temporally varying environment.Am. Nat. 151, 148–156.

    Article  CAS  PubMed  Google Scholar 

  • Borash D. J., Teótonio H., Rose M. R. and Mueller L. D. 2000 Density-dependent natural selection inDrosophila: correlations between feeding rate, development time and viability.J. Evol. Biol. 13, 181–187.

    Article  Google Scholar 

  • Boyce M. S. 1984 Restitution ofr- and K-selection as a model of density-dependent natural selection.Annu. Rev. Ecol. Syst. 15, 427–447.

    Google Scholar 

  • Case T. J. and Gilpin M. E. 1974 Interference competition and niche theory.Proc. Natl. Acad. Sci. USA 71, 3073–3077.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B. 1971 Selection in density-regulated populations.Ecology 52, 469–474.

    Article  Google Scholar 

  • Chippindale A. K., Alipaz J. A., Chen H.-W. and Rose M. R. 1997 Experimental evolution of accelerated development inDrosophila. 1. Developmental speed and larval survival.Evolution 51, 1536–1551.

    Article  Google Scholar 

  • Clark C. E. 1983 On ther-K tradeoff in density-dependent selection. InPopulation biology (ed. H. I. Freedman and C. Strobeck), pp. 72–78. Springer, Berlin.

    Google Scholar 

  • Clarke B. 1972 Density-dependent selection.Am. Nat. 106, 1–13.

    Article  Google Scholar 

  • Clarke J. M., Maynard Smith J. and Sondhi K. C. 1961 Asymmetrical response to selection for rate of development inDrosophila subobscura.Genet. Res. 2, 70–81.

    Google Scholar 

  • Dobzhansky T. 1950 Evolution in the tropics.Am. Sci. 38, 209–221.

    Google Scholar 

  • Eggleston P. 1985 Variation for aggression and response in the competitive interactions ofDrosophila melanogaster.Heredity 54, 43–51.

    Google Scholar 

  • Freeman M. F. and Tukey J. W. 1950 Transformations related to the angular and the square root.Ann. Math. Stat. 21, 607–611.

    Google Scholar 

  • Gadgil M. and Bossert W. H. 1970 Life historical consequences of natural selection.Am. Nat. 104, 1–24.

    Article  Google Scholar 

  • Gill D. E. 1972 Intrinsic rates of increase, saturation densities, and competitive ability. I. An experiment withParamecium.Am. Nat. 106, 461–471.

    Article  Google Scholar 

  • Gill D. E. 1974 Intrinsic rates of increase, saturation densities, and competitive ability. II. The evolution of competitive ability.Am. Nat. 108, 103–116.

    Article  Google Scholar 

  • Gilpin M. E., Case T. J. and Ayala F. J. 1976 θ-selection.Math. Biosci. 32, 131–139.

    Google Scholar 

  • Goldberg D. E. and Landa K. 1991 Competitive effect and response: hierarchies and correlated traits in the early stages of competition.J. Ecol. 79, 1013–1030.

    Article  Google Scholar 

  • Hairston N. G., Tinkle D. W. and Wilbur H. M. 1970 Natural selection and the parameters of population growth.J. Wild. Manage. 34, 681–690.

    Article  Google Scholar 

  • Hallam T. G. and Clark C. E. 1981 Non-autonomous logistic equations as models of populations in a deteriorating environment.J. Theor. Biol. 93, 303–311.

    Article  Google Scholar 

  • Hartl D. L. and Clark A. G. 1997Principles of population genetics, 3rd edition. Sinauer, Sunderland.

    Google Scholar 

  • Hemmat M. and Eggleston P. 1988 Competitive interactions inDrosophila melanogaster: recurrent selection for aggression and response.Heredity 60, 129–137.

    PubMed  Google Scholar 

  • Hemmat M. and Eggleston P. 1990 The biometrical genetics of competitive parameters inDrosophila melanogaster.Heredity 64, 223–231.

    PubMed  Google Scholar 

  • Joshi A. 1997 Laboratory studies of density-dependent selection: adaptations to crowding inDrosophila melanogaster.Curr. Sci. 72, 555–561.

    Google Scholar 

  • Joshi A. and Mueller L. D. 1988 Evolution of higher feeding rate inDrosophila due to density-dependent natural selection.Evolution 42, 1090–1092.

    Article  Google Scholar 

  • Joshi A. and Mueller L. D. 1993 Directional and stabilizing density-dependent natural selection for pupation height inDrosophila melanogaster.Evolution 47, 176–184.

    Article  Google Scholar 

  • Joshi A. and Mueller L. D. 1996 Density-dependent natural selection inDrosophila, trade-offs between larval food acquisition and utilization.Evol. Ecol. 10, 463–474.

    Article  Google Scholar 

  • Joshi A. and Thompson J. N. 1995 Alternative routes to the evolution of competitive ability in two competing species ofDrosophila.Evolution 49, 616–625.

    Article  Google Scholar 

  • Luckinbill L. S. 1978r andK selection in experimental populations ofEscherichia coli.Science 201, 1201–1203.

    Article  Google Scholar 

  • Luckinbill L. S. 1979 Selection and ther-K continuum in experimental populations of protozoa.Am. Nat. 113, 427–437.

    Article  Google Scholar 

  • MacArthur R. H. and Wilson E. O. 1967The theory of island biogeography. Princeton University Press, Princeton.

    Google Scholar 

  • Matessi C. and Jayakar S. D. 1976 Models of density-frequency dependent selection for the exploitation of resources. I. Intraspecific competition. InPopulation genetics and ecology (ed. S. Karlin and E. Nevo), pp. 702–721. Academic Press, New York.

    Google Scholar 

  • Mather K. and Caligari P. D. S. 1983 Pressure and response in competitive interactions.Heredity 51, 435–454.

    Google Scholar 

  • Mueller L. D. 1988a Density-dependent population growth and natural selection in food-limited environments: theDrosophila model.Am. Nat. 132, 786–809.

    Article  Google Scholar 

  • Mueller L. D. 1988b Evolution of competitive ability inDrosophila due to density-dependent natural selection.Proc. Natl. Acad. Sci. USA 85, 4383–4386.

    Article  PubMed  CAS  Google Scholar 

  • Mueller L. D. 1990 Density-dependent natural selection does not increase efficiency.Evol. Ecol. 4, 290–297.

    Article  Google Scholar 

  • Mueller L. D. 1995 Adaptation and density-dependent natural selection. InGenetics of natural populations: the continuing importance of Theodosius Dobzhansky (ed. L. Levine), pp. 222–238. Columbia University Press, New York.

    Google Scholar 

  • Mueller L. D. 1997 Theoretical and empirical examination of density-dependent selection.Annu. Rev. Ecol. Syst. 28, 269–288.

    Article  Google Scholar 

  • Mueller L. D. and Ayala F. J. 1981 Trade-off betweenr- selection and K-selection inDrosophila populations.Proc. Natl. Acad. Sci. USA 78, 1303–1305.

    Article  PubMed  Google Scholar 

  • Mueller L. D. and Sweet V. F. 1986 Density-dependent natural selection inDrosophila: evolution of pupation height.Evolution 40, 1354–1356.

    Article  Google Scholar 

  • Mueller L. D., Guo P.-Z. and Ayala F. J. 1991 Density-dependent natural selection and trade-offs in life history traits.Science 253, 433–435.

    Article  PubMed  CAS  Google Scholar 

  • Mueller L. D., Joshi A. and Borash D. J. 2000 Does population stability evolve?Ecology 81, 1273–1285.

    Article  Google Scholar 

  • Nunney L. 1990Drosophila on oranges: colonization, competition and coexistence.Ecology 71, 1904–1915.

    Article  Google Scholar 

  • Nunney L. 1996 The response to selection for fast larval developmentin Drosophila melanogaster and its effect on adult weight, an example of a fitness trade-off.Evolution 50, 1193–1204.

    Article  Google Scholar 

  • Parry G. D. 1981 The meanings ofr- and K-selection.Oecologia 48, 260–264.

    Article  Google Scholar 

  • Partridge L. and Fowler K. 1992 Direct and correlated responses to selection on age at reproduction inDrosophila melanogaster.Evolution 46, 76–91.

    Article  Google Scholar 

  • Partridge L. and Fowler K. 1993 Responses and correlated responses to artificial selection on thorax length inDrosophila melanogaster.Evolution 47, 213–226.

    Article  Google Scholar 

  • Peart D. R. 1989 Species interactions in a successional grassland. II. Colonization of vegetated sites.J. Ecol. 77, 252–266.

    Article  Google Scholar 

  • Pianka E. R. 1970 Onr- and K-selection.Am. Nat. 104, 952–956.

    Article  Google Scholar 

  • Pianka E. R. 1972r andK selection orb andd selection.Am. Nat. 106, 581–588.

    Article  Google Scholar 

  • Pianka E. R. 1988Evolutionary ecology, 4th edition. Harper and Row, New York.

    Google Scholar 

  • Prasad N. G., Shakarad M., Gohil V. M., Sheeba V., Rajamani M. and Joshi A. 2000 Evolution of reduced pre-adult viability and larval growth rate in laboratory populations ofDrosophila melanogaster selected for shorter development time.Genet. Res. 76, 249–259.

    Article  PubMed  CAS  Google Scholar 

  • Prasad N. G., Shakarad M., Anitha D., Rajamani M. and Joshi A. 2001 Correlated responses to selection for faster development and early reproduction inDrosophila: the evolution of larval traits.Evolution 55, 1363–1372.

    PubMed  CAS  Google Scholar 

  • Prout T. and Barker J. S. F. 1989 Ecological aspects of the heritability of body size inDrosophila buzzatii.Genetics 123, 803–813.

    PubMed  CAS  Google Scholar 

  • Robertson F. W. 1963 The ecological genetics of growth inDrosophila. 6. The genetic correlation between the duration of the larval period and body size in relation to larval diet.Genet. Res. 4, 74–92.

    Article  Google Scholar 

  • Roughgarden J. 1971 Density-dependent natural selection.Ecology 52, 453–468.

    Article  Google Scholar 

  • Santos M., Ruiz A., Barbadilla A., Quezada-Diaz J. E., Hasson E. and Fontdevila A. 1988 The evolutionary history ofDrosophila buzzatii. XIV. Larger flies mate more often in nature.Heredity 61, 255–262.

    Google Scholar 

  • Santos M., Borash, D. J., Joshi A., Bounlutay N. and Mueller L. D. 1997 Density-dependent natural selection inDrosophila: evolution of growth rate and body size.Evolution 51, 420–432.

    Article  Google Scholar 

  • Shiotsugu J., Leroi A. M., Yashiro M., Rose M. R. and Mueller L. D. 1997 The symmetry of correlated responses in adaptive evolution: an experimental study usingDrosophila.Evolution 51, 163–172.

    Article  Google Scholar 

  • Sokolowski M. B., Pereira H. S. and Hughes K. 1997 Evolution of foraging behavior inDrosophila by density-dependent selection.Proc. Natl. Acad. Sci. USA 94, 7373–7377.

    Article  PubMed  CAS  Google Scholar 

  • StatisticaTM 1995Statistica Vol. I: general conventions and statistics I. Statsoft Inc., Tulsa.

    Google Scholar 

  • Stearns S. C. 1977 The evolution of life-history traits, a critique of the theory and a review of the data.Annu. Rev. Ecol. Syst. 8, 145–171.

    Article  Google Scholar 

  • Tantawy A. O. and El-Helw M. R. 1970 Studies on natural populations ofDrosophila. IX. Some fitness components and their heritabilities in natural and mutant populations ofDrosophila melanogaster.Genetics 64, 79–91.

    PubMed  Google Scholar 

  • Vasi F., Travisano M. and Lenski R. E. 1994 Long term experimental evolution inEscherichia coli. II. Changes in life-history traits during adaptation to a seasonal environment.Am. Nat. 144, 432–456.

    Article  Google Scholar 

  • Wilkinson G. S. 1987 Equilibrium analysis of sexual selection inDrosophila melanogaster.Evolution 41, 11–21.

    Article  Google Scholar 

  • Zwaan B. J., Bijlsma R. and Hoekstra R. F. 1995 Artificial selection for developmental time inDrosophila melanogaster in relation to the evolution of ageing: direct and correlated responses.Evolution 49, 635–648.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabh Joshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, A., Prasad, N.G. & Shakarad, M. K-selection, α-selection, effectiveness, and tolerance in competition: Density-dependent selection revisited. J Genet 80, 63–75 (2001). https://doi.org/10.1007/BF02728332

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728332

Keywords

Navigation