Skip to main content
Log in

Lagrangian theory of constrained systems: Cosmological application

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

Previous work in the literature has studied the Hamiltonian structure of anR 2 model of gravity with torsion in a closed Friedmann-Robertson-Walker universe. Within the framework of Dirac's theory, torsion is found to lead to a second-class primary constraint linear in the momenta and a second-class secondary constraint quadratic in the momenta. This paper studies in detail the same problem at a Lagrangian level,i.e. working on the tangent bundle rather than on phase space. The corresponding analysis is motivated by a more general program, aiming to obtain a manifestly covariant, multisymplectic framework for the analysis of relativistic theories of gravitation regarded as constrained systems. After an application of the Gotay-Nester Lagrangian analysis, the paper deals with the generalized method, which has the advantage of being applicable to any system of differential equations in implicit form. Multiplication of the second-order Lagrange equations by a vector with zero eigenvalue for the Hessian matrix yields the so-called first-generation constraints. Remarkably, in the cosmological model here considered, if Lagrange equations are studied using second-order formalism, a second-generation constraint is found which is absent in first-order formalism. This happens since first- and second-order formalisms are inequivalent. There are, however, noa priori reasons for arguing that one of the two is incorrect. First- and second-generation constraints are used to derive physical predictions for the cosmological model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Morandi, C. Ferrario, G. Lo Vecchio, G. Marmo andC. Rubano:Phys. Rep.,188, 147 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. G. Esposito:Nuovo Cimento B,104, 199 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  3. E. Sezgin andP. van Nieuwenhuizen:Phys. Rev. D.,21, 3269 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  4. I. A. Nikolic:Phys. Rev. D,30, 2508 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  5. V. Szczyrba:Phys. Rev. D,36, 351 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  6. V. Szczyrba:J. Math. Phys. (N.Y.),28, 146 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. G. T. Horowitz:Phys. Rev. D.,31, 1169 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  8. G. Esposito:Nuovo Cimento B,106, 1315 (1991).

    ADS  Google Scholar 

  9. M. A. H. Maccallum:Anisotropic and inhomogeneous relativistic cosmologies, inGeneral Relativity, an Einstein Centenary Survey, edited byS. W. Hawking andW. Israel (Cambridge University Press, Cambridge, 1979).

    Google Scholar 

  10. D. Boulware:Quantization of higher-derivative theories of gravity, inQuantum Theory of Gravity, edited byS. M. Christensen (Adam Hilger, Bristol, 1984).

    Google Scholar 

  11. P. A. M. Dirac:Lectures on Quantum Mechanics (Belfer Graduate School of Science, Yeshiva University, New York, N.Y., 1964).

    Google Scholar 

  12. G. Marmo, N. Mukunda andJ. Samuel:Riv. Nuovo Cimento,6, 1 (1983).

    Article  MathSciNet  Google Scholar 

  13. G. Esposito:Quantum Gravity Quantum Cosmology and Lorentzian Geometries, second corrected and enlarged edition,Lect. Notes Phys., New Ser. m: Monographs, Vol. m12 (Springer-Verlag, Berlin, 1994).

    Book  Google Scholar 

  14. M. J. Gotay andJ. M. Nester:Ann. Inst. H. Poincaré A,30, 129 (1979).

    MathSciNet  MATH  Google Scholar 

  15. J. F. Carinena, C. Lopez andN. Roman-Roy:J. Geom. Phys.,4, 315 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  16. G. Marmo, E. J. Saletan, A. Simoni andB. Vitale:Dynamical Systems, a Differential Geometric Approach to Symmetry and Reduction (John Wiley, New York, N.Y., 1985).

    MATH  Google Scholar 

  17. G. Mendella:Geometrical aspects of Lagrangian dynamical systems with Dirac constraints, Thesis, University of Napoli (1987);A Geometrical Formalism for Constraints’ Theory, PhD Thesis, University of Napoli (1992).

  18. G. Marmo, G. Mendella andW. M. Tulczyjew:Integrability of implicit differential equations, to be published inJ. Phys. A.

  19. K. Sundermeyer:Constrained Dynamics (Springer-Verlag, Berlin, 1982).

    MATH  Google Scholar 

  20. E. Kamke:Differentialgleichungen Lösungsmethoden und Lösungen (Chelsea Publishing Company, New York, N.Y., 1959).

    Google Scholar 

  21. M. E. V. Costa, H. D. Girotti andT. J. M. Simoes:Phys. Rev. D.,32, 405 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. M. Gotay, J. Isenberg, J. Marsden, R. Montgomery, J. Sniatycki andP. B. Yasskin:Momentum maps and the Hamiltonian treatment of classical field theories with constraints to appear inMathematical Sciences Research Institute Publications (Springer-Verlag, Berlin).

  23. A. Ashtekar:Lectures on Non-Perturbative Canonical Gravity (World Scientific, Singapore, 1991).

    Book  Google Scholar 

  24. M. Ferraris, M. Francaviglia andI. Sinicco:Nuovo Cimento B,107, 1303 (1992).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esposito, G., Gionti, G., Marmo, G. et al. Lagrangian theory of constrained systems: Cosmological application. Nuov Cim B 109, 1259–1273 (1994). https://doi.org/10.1007/BF02722837

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02722837

Keywords

Navigation