Skip to main content
Log in

The standard of length in the theory of relativity and Ehrenfest paradox

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

We investigate the physical systems which can be associated with the standard clocks and standard rulers of the theory of relativity. We show that, once the standard clock has been identified, the standard ruler is uniquely determined as being a «light ruler». We then investigate under what conditions material rods can be used as standard rulers. This shows the existence of two distinct contractions in the theory that are often confused: the Einstein and the Lorentz contractions. We argue that the Lorentz contraction is a real phenomenon which results as a consequence of the interaction of material bodies with the ground-state vacuum of the Universe. These results permit us to give a definitive answer to the question «do metric standards contract?» and also to solve Ehrenfest’s paradox in an almost trivial way.

Riassunto

Si studiano i sistemi fisici che possono essere associati agli orologi standard e ai regoli standard della teoria di relatività. Si mostra che, una volta che l'orologio standard è stato identificato, il regolo standard è determinato unicamente come «regolo di luce». Si mostra quindi in quali condizioni le aste materiali possono essere usate come regoli standard. Ciò mostra l'esistenza di due distinte contrazioni nella teoria che sono spesso confuse: le contrazioni di Einstein e quelle di Lorentz. Si deduce che la contrazione di Lorentz è un fenomeno reale che risulta come consequenza dell'interazione di corpi materiali con il vuoto dello stato fondamentale dell'Universo. Questi risultati ci permettono di dare una risposta definitiva alla domanda «le metriche standard si contraggono?» e anche di risolvere il paradosso di Ehrenfest in modo abbastanza banale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ehrenfest:Phys. Z.,10, 918 (1909).

    Google Scholar 

  2. G. Cavalleri:Nuovo Cimento B,53, 415 (1968).

    Article  ADS  MATH  Google Scholar 

  3. R. G. Newburgh:Nuovo Cimento B,23, 365 (1974).

    Article  ADS  MATH  Google Scholar 

  4. T. E. Phipps jr:Found. Phys.,10, 289 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  5. H. Arzeliès:Relativistic Kinematics (London, 1966).

  6. A. Einstein:The Meaning of Relativity, fiftieth edition (Princeton, N.J., 1974).

  7. R. K. Sachs andH. Wu:General Relativity for Mathematicians (New York, N. Y., 1977).

  8. J. L. Anderson:Principles of Relativity Physics (New York, N.Y., 1967).

  9. J. Synge:Relativity, The General Theory (Amsterdam, 1960).

  10. C. W. Misner, K. S. Thorne andJ. A. Wheeler:Gravitation (San Francisco, Cal., 1971).

  11. F. J. M. Farley, J. Baley andE. Picasso:Nature (London),217, 17 (1968).

    Article  ADS  Google Scholar 

  12. J. C. Hafele andR. E. Keating:Science,77, 166, 168 (1972).

    Article  ADS  Google Scholar 

  13. D. Apsel:Gen. Rel. Grav.,10, 297 (1979).

    Article  ADS  MATH  Google Scholar 

  14. H. Reichenbach:The Philosophy of Space and Time (New York, N.Y., 1958).

  15. L. D. Landau andE. M. Lifshitz:The Classical Theory of Fields, fourth revised English edition (London, 1975).

  16. G. L. Clark:Proc. R. Soc. Edinburg, Ser. A,62, 434 (1947-48); alsoProc. Cambridge Philos. Soc.,45, 405 (1949).

    MATH  Google Scholar 

  17. E. Dewan andM. Beran:Am. J. Phys.,27, 517 (1959).

    Article  ADS  MATH  Google Scholar 

  18. G. Cavalleri andG. Spinelli:Nuovo Cimento B,56, 11 (1970).

    Article  ADS  Google Scholar 

  19. Ø. Grøn:Found. Phys.,10, 499 (1980).

    Article  ADS  Google Scholar 

  20. Ø. Grøn:Found. Phys.,11, 623 (1981).

    Article  ADS  Google Scholar 

  21. A. Grünbaun andA. I. Janis:Found. Phys.,10, 495 (1980).

    Article  ADS  MATH  Google Scholar 

  22. H. F. Ives:J. Opt. Soc. Am.,29, 472 (1939).

    Article  ADS  Google Scholar 

  23. W. A. Rodrigues jr.:Proc. of the 3rd Brasilian National Conference on the Physics of Fields and Particles (Sao Paulo, 1981), p. 175.

  24. W. A. Rodrigues jr. andJ. Tiomno: preprint IMECC-UNICAMP 219 (1982) (submitted toFound. Phys.).

  25. V. Cantoni:Found. Phys.,10, 809 (1980).

    Article  ADS  Google Scholar 

  26. T. E. Phipps jr.:Found. Phys.,10, 811 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  27. T. E. Phipps jr.:Found. Phys.,11, 633 (1981).

    Article  ADS  Google Scholar 

  28. A. Einstein:Über den Äther, Verh. Schweiz. Naturforsch. Ges.,105, Teil. II, 85 (1924);b) L'ether et la théorie de la relativité (Paris, 1921).

    Google Scholar 

  29. P. A. M. Dirac:Nature (London),168, 906 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. S. Weinberg:Gravitation and Cosmology (New York, N. Y., 1972).

  31. E. Recami andW. A. Rodrigues jr.:Found. Phys.,12, 709 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  32. H. A. Lorentz: inThe Principle of Relativity, edited byA. Sommerfeld (New York, N. Y., 1952).

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the author of this paper has agreed to not receive the proofs for correction.

Traduzione a cura della Redazione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, W.A. The standard of length in the theory of relativity and Ehrenfest paradox. Nuov Cim B 74, 199–211 (1983). https://doi.org/10.1007/BF02721678

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02721678

PACS. 03.30

Navigation