Skip to main content
Log in

Numerical methodology for proton exchange membrane fuel cell simulation using computational fluid dynamics technique

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To analyze the physical phenomena occurring in the Proton Exchange Membrane Fuel Cell (PEMFC) using Computational Fluid Dynamics (CFD) technique under an isothermal operating condition, four major governing equations such as continuity equation, momentum conservation equation, species transport equation and charge conservation equation should be solved. Among these governing equations, using the interfacial boundary condition is necessary for solving the water transport equation properly since the concept of water concentration in membrane/electrode assembly (MEA) and other regions is totally different. It was first attempted to solve the water transport equation directly in the MEA region by using interfacial boundary condition; and physically-meaningful data such as water content, proton conductivity, etc. were successfully obtained. A detailed problem-solving methodology for PEMFC is presented and result comparison with experimental data is also implemented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernadi, D. M. and Verbrugge, M. W., “Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte,”AIChE J.,37(8), 1151 (1991).

    Article  Google Scholar 

  • Berning, T., Lu, D. M. and Djilali, N., “Three-dimensional Computational Analysis of Transport Phenomena in PEM Fuel Cell,”J. Power Sources,106, 284 (2002).

    Article  CAS  Google Scholar 

  • Bird, R. B., Stewart, W. E. andLightfoot, E.N., “Transport Phenomena,” John Wiley & Sons, Inc. (1960).

  • Carrette, L., Friedrich, K. A. and Stimming, U., “Fuel Cells-Fundamentals and Applications,”FUEL CELLS,1, 5 (2001).

    Article  CAS  Google Scholar 

  • Carrette, L., et al., “Fuel Cells: Principles, Types, Fuels, and Applications,”CHEMPHYSCHEM,1, 162 (2000).

    Article  Google Scholar 

  • Center for Fuel Cell Research at USC :http://www.che.sc.edu/centers/PEMFC

  • CFD Online :http://www.cfd-online.com

  • Choi, K.-H., Peck, D. H., Kim, C. S., Shin, D. R. and Lee, T. H., “Water Transport in Polymer Membranes for PEMFC”,J. Power Sources,86, 197 (2000).

    Article  CAS  Google Scholar 

  • Davis, C. W., “A Dictionary of Electrochemistry" THE MACMILL AN PRESS Ltd. (1976).

  • DuPont’s Web Site :http://www.dupont.com

  • Dutta, S., Shimpalee, S. and Van Zee, J. W., “Three-dimensional Numerical Simulation of Straight Channel PEM Fuel Cells”,J. Appl. Electrochem.,30, 135 (2000).

    Article  CAS  Google Scholar 

  • Electrochemical Engine Center at Penn State University :http:// mtrl1.me.psu.edu

  • “High Temperature Membranes for Solid Polymer Fuel Cells,” ETSU F/02/00189/REP (2001).

  • Himmelblau, D. M., “Basic Principles and Calculations in Chemical Engineering" Prentice-Hall International, Inc. (1996).

  • IESVic Integrated Energy Systems :http://www.iesvic.uvic.ca

  • Jo, J. H., “A Mathematical Modeling of an Alkaline Fuel Cell,” Ph.D. Dissertation, Hanyang University (1999).

  • Kordesch, K. and Simader, G., “ Fuel Cells and Their Applications,” VCH (1996).

  • Korea Fuel Cell Community :http://www.freechal.com/fuelcell

  • Larminie, J., “Fuel Cell Systems Explained”, JOHN WILEY & SONS LTD. (2000).

  • Module 4 : Fuel Cell Technology, Hydrogen Fuel Cell Engines and Related Technologies, College of the Desert (2001).

  • Patankar, S.V., “Numerical Heat Transfer and Fluid Flow,” Hemisphere Publishing Corporation (1980).

  • Singh, D., Lu, D. M. and Djilali, N., “A Two-dimensional Analysis of Mass Transport in Proton Exchange Membrane Fuel Cells”,Int. J. Eng. Sci.,37, 431 (1999).

    Article  CAS  Google Scholar 

  • Springer, T. E., Zawodzinski, T. A. and Gottesfeld, S., “Polymer Electrolyte Fuel Cell Model,”J. Electrochem. Soc.,138(8), 2334 (1991).

    Article  CAS  Google Scholar 

  • Srinivasan, S., Manko, D. J., Koch, H., Enayetullah, M. A. and Appleby, A. J., “Recent Advances in Solid Polymer Electrolyte Fuel Cell Technology with Low Platinum Loading Electrodes,”J. Power Sources,29, 367 (1990).

    Article  CAS  Google Scholar 

  • Um, S. K., Wang, C. Y. and Chen, K.S., “Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells,”J. Electrochem. Soc.,147(12), 4485 (2000).

    Article  CAS  Google Scholar 

  • Wang, C. Y. and Gu, W B., “Micro-macroscopic Coupled Modeling of Battery and Fuel Cell Systems. Part II: Application to Ni-Cd and Ni-MH Cells,”J. Electrochem. Soc.,145(10), (1998).

  • Weber, A. Z. and Newman, J., “Transport in Polymer-Electrolyte Membranes: I. Physical Model”,J. Electrochem. Soc.,150(7), A1008 (2003).

    Article  CAS  Google Scholar 

  • White, R. E., Lorimer, S. E. and Darby, R., “Prediction of the Current Density at an Electrode at Which Multiple Electrode Reactions Occur under Potentiostatic Control,”J. Electrochem. Soc.,130, 1123 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Chul Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.S., Yi, S.C. Numerical methodology for proton exchange membrane fuel cell simulation using computational fluid dynamics technique. Korean J. Chem. Eng. 21, 1153–1160 (2004). https://doi.org/10.1007/BF02719487

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02719487

Key words

Navigation