Skip to main content
Log in

Simulation and analysis of extractive distillation process in a valve tray column using the rate based model

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Valve trays are becoming popular in the chemical process industries owing to their flexibility to handle a wide range of vapor throughputs. Using the rigorous rate based model, the importance of the non-equilibrium approach is demonstrated for a typical extractive distillation process in a Glitsch V-1 valve tray column. Simulation results based on an in-house developed code indicated that the rate based model predictions for a valve tray column operation showed significant differences relative to the equilibrium model. Even small errors in product purities translated into nonoptimal feed stage locations and inaccurate number of stages required. The counter-intuitive effect of high reflux ratio on separation is explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

interfacial area per unit active area

d:

characteristic length, taken as 1 m

D:

diffusion coefficient [m2·s-1]

E MV :

Murphree tray efficiency

f Lij :

liquid feed flow rate of species i to stage j [mol/s]

f Vij :

vapor feed flow rate of species i to stage j [mol/s]

F(suj):

total vapor feed flow rate to stage j [mol/s]

F Lj :

total liquid feed flow rate to stage j [mol/s]

FV Lj :

total vapor feed flow rate to stage j [mol/s]

G:

superficial gas mass velocity [kg·m-2·s-1]

H Lj :

enthalpy of liquid stream leaving stage j [J/mol]

H LFj :

enthalpy of liquid feed stream entering to stage j [J/mol]

H Vj :

enthalpy of vapor stream leaving stage j [J/mol]

H VFj :

enthalpy of vapor feed stream entering to stage j [J/mol]

k x a:

liquid-side mass-transfer coefficient based on mole fraction driving force [kg-mol·m-2·s-1]

k y a:

gas-side mass-transfer coefficient based on mole fraction driving force [kg-mol·m-2·s-1]

L:

superficial liquid mass velocity [kg·m-2·s-1]

L j :

inter-stage total liquid flow rate from stage j [mol/s]

M:

molecular weight

N ij :

inter-phase mass transfer rate of species ‘i’ in stage ‘j’ [mol/s]

P:

total pressure [kPa]

Qj :

external heat transfer to or from the stage j [J/s (Watt)]

Q Lj :

external heat transfer to or from the stage j in liquid phase [J/s (Watt)]

Q Vj :

external heat transfer to or from the stage j in vapour phase [J/s (Watt)]

r Lj :

fraction of the liquid exiting the stage j withdrawn as liquid side stream [Uj/Lj]

r Vj :

fraction of the vapor exiting the stage j withdrawn as vapor side stream [Wj/Vj]

Re G :

gas-phase Reynolds number=Gd/µ G

Re L :

gas-phase Reynolds number=Ld/Μ L

Sc G :

Schmidt number in gas-phase=v G/D G

Sc L :

Schmidt number in gas-phase=v L /D L

Sh G :

gas-side Sherwood number=k y ad/ρ G D G

Sh L :

gas-side Sherwood number=k x ad/ρ L D L

T:

temperature [K]

U j :

liquid side stream flow rate from stage j [mol/s]

V i :

molar volume of the pure liquid of species [kmol/m3]

V j :

interstage total vapor flow rate from stage j [mol/s]

W:

weir height [m]

W :

dimensionless weir height=W/d

W j :

liquid side stream flow rate from stage j [mol/s]

x i :

mole fraction, liquid

y i :

mole fraction, gas

µ:

viscosity in Re [kg·m-1·s-1]

p :

bulk-phase molar density [kg-mol·m-3]

φi :

fugacity coefficient of species i

γi :

activity coefficient of species i

δ ij :

Kronecker delta, 1 if i=j, 0 if i≠j

V:

vapor phase

L:

liquid phase

I:

interface

V:

vapor phase

L:

liquid phase

I:

interface

References

  • Aspen Plus® Steady State Simulation Version 10.1-0, Aspen Technology Inc.

  • Assabumrungrat, S., Wongwattanasate, D., Pavarajarn, V., Praserthdam, P., Arpornwichanop, A. and Goto, S., “Production of Ethyl tert-Butyl Ether from tert-Butyl Alcohol and Ethanol Catalyzed by Β-Zeolite in Reactive Distillation,”Korean J. Chem. Eng.,21(6), 1139 (2004).

    CAS  Google Scholar 

  • Cheny, W. and Kincaid, D.,Numerical Mathematics and Computing, 4th ed., Brooks/Cole Publishing Co., USA (1999).

    Google Scholar 

  • Higler, A., Chande, R., Taylor, R., Baur, R. and Krishna, R., “Non-Equilibrium Modeling of Three-Phase Distillation,”Comp. and Chem. Eng.,28, 2021 (2004).

    Article  CAS  Google Scholar 

  • Hoffmann, A., Noeres, C. and Górak, A., “Scale-Up of Reactive Distillation Columns with Catalytic Packings,”Chem. Eng. Process,43, 383 (2004).

    Article  CAS  Google Scholar 

  • Kenig, E.Y., Gorak, A., Pyhalahti, A., Jakobsson, K., Aittamaa, J. and Sundmacher, K., “Advanced Rate-Based Simulation Tool for Reactive Distillation,”AIChE J.,50, 322 (2004).

    Article  CAS  Google Scholar 

  • Kim, Y. H., Hwang, K. S. and Nakaiwa, M., “Design of a Fully Thermally Coupled Distillation Column For a Hexane Process Using a Semi-Rigorous Model,”Korean. J.Chem. Eng.,21, 1098 (2004).

    CAS  Google Scholar 

  • King, C. J.,Separation Processes, McGraw-Hill Book Company, New York (1980.)

    Google Scholar 

  • Kister, H. Z.,Distillation Design, McGraw Hill, New York (1992).

    Google Scholar 

  • Kloker, M., Kenig, E.Y., Schmitt, M., Althaus, K., Schoemakers, H., Markusse, P. and Kwant, G., “Influence of Operating Conditions and Column Configuration on the Performance of Reactive Distillation Columns with Liquid-Liquid Separators,”Can. J Chem Engg,81, 725 (2003).

    Article  Google Scholar 

  • Lee, Y. S., Kim, M.G. and Ha, D. M., “Analysis of Packed Distillation Columns With a Rate Based Model,”Korean J. Chem. Eng.,14, 321 (1997).

    Article  CAS  Google Scholar 

  • Mortaheb, H.R. and Kosuge, H., “Simulation and Optimization of Heterogeneous Azeotropic Distillation Process with a Rate-Based Model,”Chem. Eng. Process,43, 317 (2004).

    Article  CAS  Google Scholar 

  • Noeres, C., Dadhe, K., Gesthuisen, R., Engell, S. and Górak, A., “Model-Based Design, Control and Optimization of Catalytic Distillation Processes,”Chem. Eng. Process,43, 421 (2004).

    Article  CAS  Google Scholar 

  • Peng, J., Edgar, T. F. and Eldridge, R. B., “Dynamic Rate-Based and Equilibrium Models for a Packed Reactive Distillation Column,”Chem. Eng. Sci.,58, 2671 (2003).

    Article  CAS  Google Scholar 

  • Powers, M. F., Vickery, D. J., Arehole, R. and Taylor, R., “A Nonequilibrium Stage Model of Multi-component Separation Processes: V. Computational Methods for Solving the Model Equations,”Comput. & Chem. Engg.,12, 1229 (1988).

    Article  CAS  Google Scholar 

  • Pyhalahti, A. and Jakobsson, K., “Rate-based Mixed-Pool Model of a Reactive Distillation Column,”Ind. Eng. Chem. Res.,42, 6188 (2003).

    Article  CAS  Google Scholar 

  • Reid, R. C., Prausnitz, J.M. and Poling, B. E.,The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York (1988).

    Google Scholar 

  • Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W.,Object-Oriented Modeling and Design, Prentice-Hall of India, New Delhi (1997).

    Google Scholar 

  • Sanpui, D. and Khanna, A., “Selection of Mass Transfer Correlations for Rate Based Liquid-Liquid Extraction Model,”Korean J. Chem. Eng.,20, 609 (2003).

    Article  CAS  Google Scholar 

  • Seader, E. J. and Henley, J. D.,Separation Process Principles, John Wiley, Singapore (1998).

    Google Scholar 

  • Scheffe, R. D. and Weiland, R. H., “Mass Transfer Characteristics of Valve Trays,”Ind. Eng. Chem. Res.,26, 228 (1987).

    Article  CAS  Google Scholar 

  • Springer, P.A.M., Van Der Molen, S. and Krishna, R., “The Need for Using Rigorous rate-Based Models for Simulations of Ternary Azeotropic Distillation,”Comp. and Chem. Eng.,26, 1265 (2002).

    Article  CAS  Google Scholar 

  • Taylor, R. and Krishna, R.,Multi-component Mass Transfer, John Wiley & Sons, Inc., New York (1993).

    Google Scholar 

  • Toor, H. L., “Diffusion in Three Component Gas Mixtures,”AIChE J.,3, 198 (1957).

    Article  CAS  Google Scholar 

  • Toor, H. L., “Prediction of Efficiencies and Mass Transfer on a Stage with Multicomponent Systems,”AIChE J.,10, 545 (1964).

    Article  Google Scholar 

  • Vadapalli, A. and Seader, J. D., “A Generalized Framework for Computing Bifurcation Diagrams Using Process Simulation Programs,”Comp. Chem. Engg.,25, 445 (2001).

    Article  CAS  Google Scholar 

  • Wang J. C. and Henke, G. E., “Tridiagonal Matrix for Absorbers?,”Hydrocarbon Processing,45(8), 155 (1966).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravamudan Kannan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradhan, S., Kannan, A. Simulation and analysis of extractive distillation process in a valve tray column using the rate based model. Korean J. Chem. Eng. 22, 441–451 (2005). https://doi.org/10.1007/BF02719424

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02719424

Key words

Navigation