Skip to main content
Log in

The absorption model and production of 2 mesons

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

The absorption model for high-energy peripheral production of resonances is applied to the production of spin-parity 2+ mesons in pion-nucleon interaction with the twofold purpose of testing the model against the experimental data and of discussing some approximations made within the model. By a detailed numerical investigation of the partial-wave expansion we show how the impact parameter approximation, often used in the application of the model, may significantly affect both the predicted cross-section and the decay distribution. moreover, the cross-section, but not so much the decay distribution, is sensitive to the detailed way in which each partial wave in the model is modified by the absorption. We trace these features back to the fact that the low partial waves, although strongly suppressed as compared to the unmodified Born approximation, still play a major role. The comparison with experiment for production of fo (pion exchange) shows that the slope of the cross-section is correctly predicted but that the absolute magnitude is too big by a factor of around two. For A2 (1310) production (rho exchange) the slope of the cross-section can be made to agree with experiment only after the introduction of a fairly strong form factor; the absolute ma gntude and the energy dependence of the cross-section are wrong. These results strengthen the conclusion that the absorption model is unable to reproduce the experimental data for production of high-spin resonances, especially if vector meson exchange has to be assumed. The spin-2 formalism, including decay widths and decay distributions, is presented in the Appendices.

Riassunto

Si applica alla produzione di mesoni con spin-parità 2+ il modello di assorbimento per la produzione periferica di risonanze di alta energia nella interazione pione-nucleone col duplice proposito di verificare il modello rispetto ai dati sperimentali e di discutere alcune approssimazioni fatte nel modello. Con una dettagliata indagine numerica dello sviluppo dell'onda parziale si mostra come l'approssimazione del parametro d'urto, spesso usata nell'applicazione del modello, possa influire in modo significativo sia sulla sezione d'urto predetta sia sulla distribuzione di decadimento. Inoltre la sezione d'urto, ma non altrettanto la distribuzione di decadimento, è sensibile al modo dettagliato in cui ciascuna onda parziale del modello è modificata dall'assorbimento. Si riallacciano queste caratteristiche al fatto che le onde parziali basse, anche se fortemente soppresse in confronto all'approssimazione di Born non modificata, ricoprono ancora un ruolo importante. Il confronto con gli esperimenti nel caso della produzione di fo (scambio di pioni) mostra che la pendenza della sezione d'urto è predetta correttamente ma che la grandezza assoluta è troppo grande per un fattore di circa 2. Per la produzione di A2 (1310) (scambio di σ) si può fare in modo che la pendenza della sezione d'urto concordi con gli esperimenti solo dopo l'introduzione di un fattore di forma adeguato; la grandezza assoluta e la dipendenza della sezione d'urto dall'energia sono errate. Questi risultati riconfermano la conclusione che il modello di assorbimento è inadatto a riprodurre i dati sperimentali della produzione di risonanze di spin elevato, specialmente se si deve presupporre lo scambio di mesoni vettoriali. Nelle Appendici si presenta il formalismo dello spin 2, incluse le ampiezze e le distribuzioni di decadimento.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Rosenfeld, A. Barbaro-Galtieri, W. H. Barkas, P. L. Bastien, J. Kirz andM. Roos:Rev. Mod. Phys.,36, 977 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  2. Birmingham-Glasgow-London (I. C.)-Oxford-Chilton (R. H. E. L.) Collaboration:Phys. Lett.,14, 338 (1965); and private communication fromS. Misbahuddin, J. M. Scarr andA. M. Segar.

    Article  Google Scholar 

  3. For a recent review of the OPE model including references to earlier work see:J. D. Jackson:Rev. Mod. Phys.,37 484 (1965).

    Article  ADS  Google Scholar 

  4. E. Ferrari andF. Selleri:Suppl. Nuovo Cimento,24, 453 (1962);Nuovo Cimento,27, 1450, (1963).

    Article  Google Scholar 

  5. J. D. Jackson andH. Pilkuhn:Nuovo Cimento,33, 906 (1964) and errata34, 1841 (1964).

    Article  Google Scholar 

  6. N. J. Sopkovich:Nuovo Cimento,26, 186 (1962).

    Article  Google Scholar 

  7. K. Gottfried andJ. D. Jackson:Nuovo Cimento,34, 735 (1964).

    Article  Google Scholar 

  8. L. Durand andY. T. Chiu:Phys. Rev. Lett.,12, 399 (1964) and erratum13, 45 (1964).

    Article  ADS  Google Scholar 

  9. Recent attempts to derive the absorption model outside the framework of potential theory are given inJ. S. Ball andW. R. Frazer:Phys. Rev. Lett.,14, 746 (1965);H. D. D. Watson:Phys. Lett.,17, 72 (1965). See alsoA. Bialas andL. Van Hove:Nuovo Cimento,38, 1385 (1965);R. Omnès:Phys. Rev.,137, B 649 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  10. K. Dietz andH. Pilkuhn:Nuovo Cimento,37, 1561 (1965);39, 928 (1965);R. C. Arnold:Phys. Rev.,136, B 1388 (1964).

    Article  Google Scholar 

  11. Our metric is (+++−).

  12. See,e.g.,K. J. Barnes:Journ. Math. Phys.,6, 788 (1965).

    Article  ADS  Google Scholar 

  13. J. D. Jackson:Nuovo Cimento,34, 1644 (1964).

    Article  Google Scholar 

  14. For some typical results obtained within the absorption model see,e.g.,J. D. Jackson,J. T. Donohue,K. Gottfried,R. Keyser andB. E. Y. Svensson:Phys. Rev.,139, B 428 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  15. L. Durand andY. T. Chiu:Phys. Rev.,139, B 646 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Jacob andG. C. Wick:Ann. of Phys.,7, 404 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  17. We use the phase conventions of Edmonds,Angular Momentum in Quantum Mechanics, (Princeton, N. J., 1957); cf. als ref. (18)H. Högaasen andJ. Högaasen:Nuovo Cimento,39, 941 (1965).

    Google Scholar 

  18. H. Högaasen andJ. Högaasen:Nuovo Cimento,39, 941 (1965).

    Article  Google Scholar 

  19. This last choice produces a strict equality betweenS andI in the absence of absorption(k(j)ξ1) if either β or θ vanish.

  20. Our results complement those ofM. Bander andG. L. Shaw:Phys. Rev.,139, B 956 (1965). They show that using an absorption factor affecting only the lowest partial waves and turning it off atj=3/2 orj=5/2 did change the cross-section but turning it off atj=51/2 or atj=10 1/2 had not much effect. Forj=5 1/2, the absorption factor is still quite appreciable (see Fig. 2), and their result probably indicates that, due to their smaller values of ε and to the effect of the amplitudes with α>0, the first (positive) peak (see Fig. 3 and discussion in the text below) still domi-nates in the presence of absorption.

    Article  ADS  Google Scholar 

  21. For simplicity we make the discussion in terms of the Bessel functions; the results are equally valid for the rotation coefficients as functions ofj.

  22. V. Barger andM. Ebel:Phys. Rev.,138, B 1148 (1965);G. A. Ringland andR. J. N. Phillips:Phys. Lett. 12, 62 (1965).

    Article  ADS  Google Scholar 

  23. Aachen-Birmingham-Bonn-Hamburg-London (I. C.)-München Collaboration:Nuovo Cimento,31, 729 (1964).

    Article  Google Scholar 

  24. CERN-Ecole Polytechnique Collaboration:Dubna Conference 1964 and private communication fromH. Winzeler.

  25. W. Galbraith, E. W. Jenkins, T. F. Kycia, B. A. Leontić, R. H. Phillips andA. L. Read:Phys. Rev.,138, B 913 (1965).

    Article  ADS  Google Scholar 

  26. S. J. Lindenbaum:Proceedings of the International Conference on Nucleon Structure (Stanford, 1963) (edited byR. Hofstadter andL. I. Schiff).

  27. We have also tried a moderate form factor of the type described in Sect.42, the effect of which is to suppress the theoretical cross-section at large production angles and shifting the values of the density matrix elements towards their values in the unmodified Born approximation.

  28. Aachen-Berlin-Birmingham-Bonn-Hamburg-London (I. C.)-München Collaboration:Phys. Rev.,138, B 897 (1965).

    Article  ADS  Google Scholar 

  29. Form factor and absorption model have previously been considered in ref. (14, 20). For some typical results obtained within the absorption model see,e.g.,.

    Article  ADS  Google Scholar 

  30. Saclay-Orsay-Bari-Bologna Collaboration:Phys. Lett.,15, 69 (1965).

    ADS  Google Scholar 

  31. Aachen-Berlin-CERN Collaboration: private communication fromD. R. O. Morrison.

  32. Without giving a complete list of references, we refer to ref. (3, 14, 18, 22), For a recent review of the OPE model including references to earlier work see:.B. E. Y. Svensson:Nuovo Cimento,37, 714 (1965);39, 667 (1965);H. Högaasen andJ. Högaasen:Nuovo Cimento,40, A 560 (1965):L. Durand andY. T. Chiu:Phys. Rev.,137, B 1530 (1965), which together cover most reaction treated in the absorption model so far.

    Article  ADS  Google Scholar 

  33. A general helicity state is obtained from the state (A.2) by a rotation (15).. Since this is essentially trivial, at least for the integer-spin case under study here, we prefer to leave it out.

    Article  MathSciNet  Google Scholar 

  34. Helicity states for spin-2 particles have also been given byY. Frishman andE. Gotsman:Phys. Rev.,140, B 1450 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  35. The notation is such that a four-vectora is written (a x ,a y ,a z ,a 0).

  36. K. Gottfried andJ. D. Jackson:Nuovo Cimento,33, 309 (1964).

    Article  Google Scholar 

  37. C. Zemach:Phys. Rev.,133, B 1201 (1964);S. U. Chung:Phys. Rev.,138, B 1541 (1965).

    Article  ADS  Google Scholar 

  38. P. Dennery andA. Krzywicki:Phys. Rev.,136, B 839 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  39. S. M. Berman andM. Jacob:Phys. Rev.,139, B 1023 (1965),

    Article  ADS  MathSciNet  Google Scholar 

  40. W. R. Frazer, J. R. Fulco andF. R. Halpern:Phys. Rev.,136, B 1207 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  41. This is the same distribution as for uncorrelated three-pion decay of a 2+ boson after integration over the whole Dalitz plot (38,39),

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

(S.-et-O.).

Traduzione a cura della Redazione

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Högaasen, H., Högaasen, J., Keyser, R. et al. The absorption model and production of 2 mesons. Nuovo Cimento A (1965-1970) 42, 323–350 (1966). https://doi.org/10.1007/BF02717923

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02717923

Keywords

Navigation