Skip to main content
Log in

In vivo studies of rat alveolar macrophase microviscosity: Influence of pulmonary surfactant synthesis stimulation

  • Published:
Lung Aims and scope Submit manuscript

An Erratum to this article was published on 01 December 1988

Abstract

The influence of pharmacological stimulation of pulmonary surfactant synthesis has been studied in rat alveolar spaces. Animals were treated acutely with Ambroxol at a dose of 4 mg/kg b.w./day p.o. and 5 days later the following biochemical and physico-chemical parameters were determined: BAL fluid lecithin content, BAL fluid microviscosity, alveolar macrophage membrane microviscosity, spontaneous generation of superoxide anion by alveolar macrophages, elastase and antielastase activity of BAL fluid. Treatment with Ambroxol significantly increased the lecithin content of BAL fluid and significantly decreased the macrophage plasma membrane microviscosity. A likely consequence of increased lecithin content in alveolar macrophages (an activation of these cells) was suggested by the increase of the spontaneous production of superoxide. Finally, in the BAL fluid of Ambroxol-treated rats the elastase activity was reduced, whereas the elastase inhibitory activity was almost doubled in respect to control rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allison AC (1974) Pathogenic effects of inhaled particles and antigens. Ann NY Acad Sci 221:299–308

    Article  PubMed  CAS  Google Scholar 

  2. Ando M, Suga M, Shima K, Sugimoto M, Tokuomi H (1978) Activation of alveolar macrophages exposed to lavage-procured immunoglobulin G obtained from normal rabbit lungs. Infect Immun 20:476–484

    PubMed  CAS  Google Scholar 

  3. Ando M, Suga M, Sugimoto M, Tokuomi H (1979) Superoxide production in pulmonary alveolar macrophages and killing of BCG by the superoxide-generating system with or without catalase. Infect Immun 24:404–410

    PubMed  CAS  Google Scholar 

  4. Bieth J, Spiesse B, Wermuth CG (1974) The synthesis and analytical use of a highly sensitive and convenient substrate of elastase. Biochem Med 11:350–357

    Article  PubMed  CAS  Google Scholar 

  5. Boraschi D, Ghezzi P, Salmona M, Tagliabue A (1982) IFN-γ-induced reduction of superoxide anion generation by macrophages. Immunology 45:621–628

    PubMed  CAS  Google Scholar 

  6. Brot N, Werth J, Koster D, Weissbach H (1982) Reduction of N-acetyl methionine sulfoxide: a simple assay for peptide methionine sulfoxide reductase. Anal Biochem 122:291–294

    Article  PubMed  CAS  Google Scholar 

  7. Cantin A, Crystal RG (1985) Oxidants, antioxidants and the pathogenesis of emphysema. Eur J Respir Dis 66 (Suppl 139):7–17

    Google Scholar 

  8. Carp H, Janoff A (1980) Potential mediators of inflammation: phagocyte-derived oxidants suppress the elastase-inhibitory capacity of alpha 1-proteinase inhibitor in vitro. J Clin Invest 66:987–995

    Article  PubMed  CAS  Google Scholar 

  9. Carp H, Miller F, Hoidal R, Janoff A (1982) Potential mechanism of emphysema: alpha 1-proteinase inhibitor recovered from lungs of cigarette smokers contains oxidized methionine and has decreased elastase inhibitory capacity. Proc Natl Acad Sci USA 779:2041–2045

    Article  Google Scholar 

  10. Carp H, Janoff A, Abrams W, Weinbaum G, Drew RT, Weissbach H, Brot N (1983) Human methionine sulfoxide-peptide reductase, an enzyme capable of reactivating oxidized alpha-1-proteinase inhibitor in vitro. Am Rev Respir Dis 127:301–305

    PubMed  CAS  Google Scholar 

  11. Cerutti P, Kapanci Y (1979) Effects of metabolite VIII of bromhexine (NA 872) on type II epithelium of the lung. Respiration 37:241–251

    Article  PubMed  CAS  Google Scholar 

  12. Claypool WD, Rogers RM, Matuschak GM (1984) Update on the clinical diagnosis, management, and pathogenesis of pulmonary alveolar proteinosis (phospholipidosis). Chest 85:550–558

    PubMed  CAS  Google Scholar 

  13. Curstedt T, Hagman M, Robertson B, Camner P (1983) Rabbit lungs after long-term exposure low nickle dust concentration. I. Effects on phospholipids concentration and surfactant activity. Environ Res 30:89–94

    Article  PubMed  CAS  Google Scholar 

  14. Curti PC (1974) Therapeutische Untersuchungen mit metabolit VIII von bromhexin bei mangelhafter oberflachenaktiver substanz der alveolen. Arzneimittelforsch 24:847–849

    PubMed  CAS  Google Scholar 

  15. Eckert H, Lux M, Lachmann B (1983) The role of alveolar macrophages in surfactant turnover. An experimental study with metabolite VIII of bromhexine (Ambroxol). Lung 161:213–218

    PubMed  CAS  Google Scholar 

  16. Fasske E, Morgenroth K (1983) Experimental bleomycin lung in mice. A contribution to the pathogenesis of pulmonary fibrosis. Lung 161:133–146

    PubMed  CAS  Google Scholar 

  17. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  18. Golde DW, Territo M, Finley TM, Cline MJ (1976) Defective lung macrophages in pulmonary alveolar proteinosis. Ann Intern Med 85:304–309

    PubMed  CAS  Google Scholar 

  19. Grunberger D, Haimovitz R, Shinitzky M (1982) Resolution of plasma membrane lipid fluidity in intact cells labelled with diphenylhexatriene. Biochim Biophys Acta 688:764–774

    Article  PubMed  CAS  Google Scholar 

  20. Harada RN, Repine JE (1985) Pulmonary host defense mechanisms. Chest 87:247–252

    PubMed  CAS  Google Scholar 

  21. Harris GO (1979) Pulmonary alveolar proteinosis: abnormal in vitro function of alveolar macrophages. Chest 76:156–159

    PubMed  CAS  Google Scholar 

  22. Hook GER, Gilmore LB (1982) Hydrolases of pulmonary lysosomes and lamellar bodies. J Biol Chem 257:9211–9220

    PubMed  CAS  Google Scholar 

  23. Itoh T, Tanaka M, Kaneko H (1980) Flame ionization detection system for thin layer chromatography of lipids. In: Touchstone JC, Rogers D (eds) Thin layer chromatography. John Wiley & Sons, New York, pp. 536–552

    Google Scholar 

  24. Jarstrand C (1984) Role of surfactant in the pulmonary defense system. In: Robertson B, Van Golde LMG, Batenburg JJ (eds) Pulmonary surfactant. Elsevier Science Publishers, Amsterdam, pp. 187–201

    Google Scholar 

  25. Johansson A, Camner P, Jarstrand C, Wiernik A (1980) Morphology and function of alveolar macrophages after long-term nickel exposure. Environ Res 23:170–180

    Article  PubMed  CAS  Google Scholar 

  26. LaForce FM, Kelly WJ, Huber GL (1973) Inactivation of stafilococci by alveolar macrophages with preliminary observations on the importance of alveolar lining material. Am Rev Respir Dis 108:784–790

    PubMed  CAS  Google Scholar 

  27. Lowry OK, Rosenbrough NJ, Farr AL, Randall RG (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  28. Merritt TA, Cochrane CG, Holcomb K, Bohl B, Hallman M, Strayer D, Edwards DK III, Gluck L (1983) Elastase and alpha 1-proteinase inhibitor activity in tracheal aspirates during respiratory distress syndrome. J Clin Invest 72:656–666

    PubMed  CAS  Google Scholar 

  29. O’Neill S, Lesperance E, Klass DJ (1984) Rat lung surfactant enhances bacterial phagocytosis and intracellular killing by alveolar macrophages. Am Rev Respir Dis 130:225–230

    PubMed  CAS  Google Scholar 

  30. Prevost MC, Soula G, Douste-Blazy L (1978) Action d’un dérivé de la bromhexine sur les phospholipides des macrophages alvéolaires de lapin. Bull Europ Physiopath Resp 14:53–60

    CAS  Google Scholar 

  31. Reifenrath R (1983) Surfactant action in bronchial mucus transport. In: Cosmi EV, Scarpelli EM (eds) Pulmonary surfactant system. Elsevier Science Publishers, Amsterdam, pp. 339–347

    Google Scholar 

  32. Robertson B (1980) Interaction of pulmonary surfactant and alveolar macrophages in the nonspecific defence system of the lung. Eur J Respir Dis 61 (Suppl 108) 16–18

    Google Scholar 

  33. Rouzer CA, Scott WA, Griffith OW, Hamill AL, Cohn ZA (1982) Glutathione metabolism in resting and phagocytosing peritoneal macrophages. J Biol Chem 247:2002–2008

    Google Scholar 

  34. Scarpelli EM (1968) The surfactant system of the lung. Lea and Febiger, Philadelphia

    Google Scholar 

  35. Shinitzky M, Barenholz Y (1978) Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta 515:367–394

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF02714039.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luisetti, M., Salmona, M., Pozzi, E. et al. In vivo studies of rat alveolar macrophase microviscosity: Influence of pulmonary surfactant synthesis stimulation. Lung 165, 333–340 (1987). https://doi.org/10.1007/BF02714449

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02714449

Key words

Navigation