Skip to main content
Log in

Mechanics of the pleural space: Fundamental concepts

  • Review
  • Published:
Lung Aims and scope Submit manuscript

Abstract

The transmission of forces from the respiratory muscles to the lung across the extremely thin pleural space has been poorly understood because of the difficulty of accurately measuring pleural liquid and pleural surface pressure (lung static recoil or transpulmonary pressure). Recent results using relatively noninvasive techniques have indicated that the vertical gradient in pleural liquid pressure is not hydrostatic, that pleural liquid pressure is closely related to lung recoil, and that there exists a very thin but continuous pleural liquid layer. These findings contradict concepts based on hydrostatic equilibrium and on the distinction between pleural liquid and pleural surface pressure due to pleural contact. Pleural liquid pressure is not in hydrostatic equilibrium because the difference between the vertical gradient in pleural liquid pressure and the effect of gravity is always balanced by a pressure loss due to a viscous flow within the pleural space. Fluid lubrication of the pleural surfaces is the primary function of the pleural space. The mechanical interaction between the lung and the chest wall is coupled to the dynamics of liquid within the pleural space, which is viewed as a flow-through system. Homeostasis is achieved in such a system by the adjustment of the viscous flow within the pleural space and the outflow absorption rate by lymphatics to the microvascular filtration rate across pleural capillaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agostoni E (1972) Mechanics of the pleural space. Physiol Rev 52:57–128

    PubMed  CAS  Google Scholar 

  2. Agostoni E, D’Angelo E (1968) The recoil of the most dependent part of the lung. Respir Physiol 5:379–384

    Article  PubMed  CAS  Google Scholar 

  3. Agostoni E, D’Angelo E (1970) Comparative features of the transpulmonary pressure. Respir Physiol 11:76–83

    Article  PubMed  Google Scholar 

  4. Agostoni E, D’Angelo E, Bonanni MV (1969) Measurements of pleural liquid pressure without cannula. J Appl Physiol 6:245–256

    CAS  Google Scholar 

  5. Agostini E, Taglietti A, Setnikar I (1957) Absorption force of the capillaries of the visceral pleural in determination of intrapleural pressure. Am J Physiol 191:277–282

    Google Scholar 

  6. Agostoni E, D’Angelo E, Roncoroni G (1968) The thickness of the pleural liquid. Respir Physiol 5:1–13

    Article  PubMed  CAS  Google Scholar 

  7. Agostoni E, Miserocchi G (1970) Vertical gradient of transpulmonary pressure with active and artificial lung expansion. J Appl Physiol 29:705–712

    PubMed  CAS  Google Scholar 

  8. Agostoni E, Miserocchi G, Bonnani MV (1969) Thickness and pressure of the pleural liquid in some mammals. Respir Physiol 6:245–256

    Article  PubMed  CAS  Google Scholar 

  9. Albertine KH, Weiner-Kronish JP, Bastacky J, Staub NC (1984) The structure of the pleural space in sheep (Abstract). Fed Proc 43:831

    Google Scholar 

  10. Albertine KH, Weiner-Kronish JP, Staub NC (1984) The structure of the parietal pleura and its relationship to pleural liquid dynamics in sheep. Anat Rec 208:401–409

    Article  PubMed  CAS  Google Scholar 

  11. Andrews PM, Porter KR (1973) The ultrastructural morphology and possible functional significance of mesothelial microvilli. Anat Rec 177:409–426

    Article  PubMed  CAS  Google Scholar 

  12. Banchero N, Schwartz PE, Tsakiris AG, Wood EH (1967) Pleural and esophageal pressures in the upright body position. J Appl Physiol 23:228–234

    PubMed  CAS  Google Scholar 

  13. Bar-Yishay E, Hyatt RE, Rodarte JR (1986) Effect of heart weight on distribution of lung surface pressures in dogs. J Appl Physiol 61:712–717

    PubMed  CAS  Google Scholar 

  14. Bohlen HG, Gore RW, Hutchin PM (1977) Comparison of microvascular pressures in normal and spontaneously hypertensive rats. Microvasc Res 13:125–130

    Article  PubMed  CAS  Google Scholar 

  15. Brandi G (1972) Frictional forces at the surface of the lung. Bull Physio-Path Resp 8:323–336

    CAS  Google Scholar 

  16. Chevalier PA, Rodarte JR, Harris LD (1978) Regional lung expansion at total lung capacity in intact vs. excised canine lungs. J Appl Physiol 45:363–369

    PubMed  CAS  Google Scholar 

  17. Coulam CM, Wood EH (1971) Regional differences in pleural and esophageal pressures in head-up and head-down positions. J Appl Physiol 31:277–287

    PubMed  CAS  Google Scholar 

  18. Courtice FC, Simmonds WJ (1954) Physiological significance of lymph drainage of the serous cavities and lungs. Physiol Rev 34:419–448

    PubMed  CAS  Google Scholar 

  19. D’Angelo E, Bonanni MV, Michelini S, Agostoni E (1970) Topography of the pleural surface pressure in rabbits and dogs. Respir Physiol 8:204–229

    Article  PubMed  CAS  Google Scholar 

  20. Glazier JB, Hughes JMB, Maloney JE, West JB (1967) Vertical gradient of alveolar size in lungs of dogs frozen intact. J Appl Physiol 23:694–705

    PubMed  CAS  Google Scholar 

  21. Granger DN, Taylor AE (1980) Permeability of intestinal capillaries to endogenous macromolecules. Am J Physiol 238:H457–464

    PubMed  CAS  Google Scholar 

  22. Hajji MA, Wilson TA, Lai-Fook SJ (1979) Improved measurements of shear modulus and pleural membrane tension of the lung. J Appl Physiol 47:175–181

    PubMed  CAS  Google Scholar 

  23. Hills BA, Butler BD, Barrow RE (1982) Boundary lubrication imparted by pleural surfactants and their identification. J Appl Physiol 53:463–469

    PubMed  CAS  Google Scholar 

  24. Hoffman EA, Behrenbeck T, Chevalier PA, Wood EH (1983) Estimation of regional pleural surface expansile forces in intact dog. J Appl Physiol 55:935–948

    PubMed  CAS  Google Scholar 

  25. Hoffman AE, Lai-Fook SJ, Wei JH, Wood EH (1983) Pleural pressures by wick catheters. J Appl Physiol 55:1523–1529

    PubMed  CAS  Google Scholar 

  26. Hoffman EA, Ritman EL (1985) Effect of body orientation on regional lung expansion in dog and sloth. J Appl Physiol 59:481–491

    PubMed  CAS  Google Scholar 

  27. Hogg JC, Nepszy S (1969) Regional lung volume and pleural pressure gradient estimated from lung density in dogs. J Appl Physiol 27:198–203

    PubMed  CAS  Google Scholar 

  28. Hoppin FG, Jr., Green ID, Mead J (1969) Distribution of pleural surface pressure in dogs. J Appl Physiol 27:863–873

    PubMed  Google Scholar 

  29. Hubmayr RD, Walters BJ, Chevalier PA, Rodarte JR, Olson LE (1983) Topographic distribution of regional lung volume in anesthetized dogs. J Appl Physiol 54:1048–1056

    Article  PubMed  CAS  Google Scholar 

  30. Hyatt RE, Bar-Yishay E, Abel MD (1985) Influence of the heart on the vertical gradient of transpulmonary pressure in dogs. J Appl Physiol 58:52–57

    PubMed  CAS  Google Scholar 

  31. Kaplowitz MR, Lai-Fook SJ (1985) Pressure and dimensions of pleural liquid at lobar margins of dogs and rabbits (Abstract). Fed Proc 44:1027

    Google Scholar 

  32. Kinasewitz GT, Fishman AP (1981) Influence of alterations in Starling forces on visceral pleural fluid movement. J Appl Physiol 51:671–677

    PubMed  CAS  Google Scholar 

  33. Kinasewitz GT, Groome LT, Marshall RP, Diana JN (1983) Permeability of the canine visceral pleural. J Appl Physiol 55:121–130

    PubMed  CAS  Google Scholar 

  34. Kim KJ, Critz A, Crandall E (1979) Transport of water and solute across sheep visceral pleura. Am Rev Respir Dis 120:882–892

    Google Scholar 

  35. Krueger JJ, Bain T, PattersonJL. Elevation gradient of intrathoracic pressure. J Appl Physiol 16:465–468

  36. Lai-Fook SJ, Beck KC, Southorn PA (1984) Pleural liquid pressure measured by micropipettes in rabbits. J Appl Physiol 56:1633–1639

    PubMed  CAS  Google Scholar 

  37. Lai-Fook SJ, Kaplowitz MR (1985) Pleural liquid thickness in situ by light microscopy in five mammalian species. J Appl Physiol 59:603–610

    PubMed  CAS  Google Scholar 

  38. Lai-Fook SJ, Price DC, Staub NC (1987) The relationship between liquid and vertical liquid pressure gradient in a model of the pleural space. J Appl Physiol 62:1747–1754

    PubMed  CAS  Google Scholar 

  39. Lai-Fook SJ, Kaplowitz MR (1986) Protein concentration and thickness of pleural liquid in spontaneously hypertensive rats and normal rats (Abstract). Fed Proc 45:317

    Google Scholar 

  40. McLaughlin RF, Tyler WS, Canada RO (1961) A study of the subgross pulmonary anatomy of various mammals. Am J Anat 108:149–159

    Article  Google Scholar 

  41. McMahon SM, Proctor DF, Permutt S (1969) Pleural surface pressure in dogs. J Appl Physiol 27:881–885

    PubMed  CAS  Google Scholar 

  42. Milic-Emili J, Henderson JAM, Dolovich MB, Trop D, Kaneko K (1966) Regional distribution of inspired gas in the lung. J Appl Physiol 21:749–759

    PubMed  CAS  Google Scholar 

  43. Miserocchi G, Nakamura T, Mariani E, Negrini D (1981) Pleural liquid pressure over the interlobar mediastinal and diaphragmatic surfaces of the lung. Respir Physiol 46:61–69

    Article  PubMed  CAS  Google Scholar 

  44. Miserocchi G, Negrini D, Mariani E, Passafaro M (1983) Reabsorption of saline- or plasma-induced hydrothorax. J Appl Physiol 54:1574–1578

    Article  PubMed  CAS  Google Scholar 

  45. Miserocchi G, Negrini D, Mortola J (1984) Comparative features of Starling-lymphatic interaction at the pleural level in mammals. J Appl Physiol 56:1151–1156

    PubMed  CAS  Google Scholar 

  46. Miserocchi G, Pistolesi M, Miniati M, Bellina CR, Negrini D, Giuntini C (1984) Pleural liquid pressure gradients and intrapleural distribution of injected bolus. J Appl Physiol 56:526–532

    PubMed  CAS  Google Scholar 

  47. Negrini D, Pistolesi M, Miniati M, Bellina R, Giuntini C, Miserocchi G (1985) Regional protein absorption rates from the pleural cavity in dogs. J Appl Physiol 58:2062–2067

    PubMed  CAS  Google Scholar 

  48. Olson LE, Lai-Fook SJ (1986) Pleural liquid pressure measured with rib capsules in ponies (Abstract). Physiologist. 29:124

    Google Scholar 

  49. Patlak CS, Goldstein DA, Hoffman JF (1963) The flow of solute and solvent across a two membrane system. J Theor Bio 5:525–542

    Google Scholar 

  50. Permutt S, Caldini P, Bane H, Howard HP, Riley RL (1967) Liquid pressure versus surface pressure of the esophagous. J Appl Physiol 23:927–933

    PubMed  CAS  Google Scholar 

  51. Proctor DF, Caldini P, Permutt S (1968) The pressure surrounding the lung. Respir Physiol 5:130–144

    Article  PubMed  CAS  Google Scholar 

  52. Rutishauser WJ, Banchero N, Tsakiris AG, Edmundowicz AC, Wood EH (1966) Pleural pressures at dorsal and ventral sites in supine and prone body positions. J Appl Physiol 21:1500–1510

    PubMed  CAS  Google Scholar 

  53. Rutishauser WJ, Banchero N, Tsakiris AG, Wood EH (1967) Effect of gravitational and inertial forces on pleural and esophageal pressures. J Appl Physiol 22:1041–1052

    PubMed  CAS  Google Scholar 

  54. Setnikar I, Agostoni E, Taglietti A (1957) Entita, caratteristiche e origine della depressione pleurica. Arch Sci Biol 41:312–325

    CAS  Google Scholar 

  55. Spells KR (1969) Comparative studies in lung mechanics based on a survey of literature data. Resp Physiol 8:37–57

    Article  CAS  Google Scholar 

  56. Stahl WR (1967) Scaling of respiratory variables in mammals. J Appl Physiol 22:453–460

    PubMed  CAS  Google Scholar 

  57. Stewart PB, Burgen A (1958) The turnover of fluid in the dog’s pleural cavity. J Lab Clin Med 52:212–230

    PubMed  CAS  Google Scholar 

  58. Surprenant EL, Rodbard S (1963) A hydrostatic pressure gradient in the pleural sac. Am Heart J 66:215–220

    Article  PubMed  CAS  Google Scholar 

  59. Thurlbeck WM, Marshall RM (1973) Topography of esophageal pressure in the dog. J Appl Physiol 34:590–596

    PubMed  CAS  Google Scholar 

  60. West JB, Matthews FL (1972) Stresses, strain, and surface pressures in the lung caused by its weight. J Appl Physiol 32:332–345

    PubMed  CAS  Google Scholar 

  61. Wiederhielm CA, Woodbury JW, Kirk S, Rushmer RF (1964) Pulsatile pressures in the microcirculation of frog’s mesentery. Am J Physiol 207:173–176

    PubMed  CAS  Google Scholar 

  62. Weiner-Kronish JP, Albertine KH, Lichko V, Staub NC (1984) Protein egress and entry rates in pleural liquid and plasma in sheep. J Appl Physiol 56:459–463

    Google Scholar 

  63. Weiner-Kronish JP, Gropper MA, Lai-Fook SJ (1985) Pleural liquid pressure in dogs measured using a rib capsule. J Appl Physiol 59:597–602

    Google Scholar 

  64. Wunder CC, Reed JH Jr., McConahey WM III, Cronin L, Wood EH (1969) Nature of pleural space of dogs. J Appl Physiol 27:637–643

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai-Fook, S.J. Mechanics of the pleural space: Fundamental concepts. Lung 165, 249–267 (1987). https://doi.org/10.1007/BF02714442

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02714442

Key words

Navigation