Skip to main content
Log in

Pulmonary hypertension induced by amosite asbestos: A physiological and morphologic study in the guinea pig

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Although there is increasing evidence that mineral dust exposure will produce obstructive lung disease, there is little information on the effects of mineral dust on the pulmonary vascular system. To examine whether exposure to amosite asbestos would affect the pulmonary vasculature and produce pulmonary hypertension, we instilled 5 mg amosite asbestor intratracheally into guinea pigs. After periods of 3 and 6 months, we examined their pulmonary and pulmonary vascular function, and compared these data to those obtained from groups of control animals. We found that, at both time periods, there was pulmonary arterial hypertension, with alteration of the vascular pressure-flow relationships. This was accompanied by abnormalities in the structure of the small pulmonary arterioles. The animals also showed airflow obstruction, with air trapping and an upward shift of the pressure-volume curve. There was evidence of emphysema, and the animals were moderately hypoxic. We found no consistent increase in inflammatory cells either in lavage or peripheral blood, and the histamine dose-response curves were similar in control and asbestos-exposed animals at 6 months. We conclude that intratracheal instillation of asbestos in the guinea pig produces pulmonary hypertension associated with modest hypoxia, emphysema, and airflow obstruction. Whether pulmonary hypertension reflects emphysema-induced hypoxia and loss of vascular bed, or is related to the brief but intense inflammatory infiltrate induced by asbestos, is unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barry BE, Wong KC, Brody AR, Crapo JD (1985) Reaction of rat lungs to inhaled chrysotile asbestos following acute and subchronic exposures. Exp Lung Res 5:1–22

    Google Scholar 

  2. Becklake MR (1985) Chronic airflow limitation: its relationship to work in dustry occupations. Chest 88:608–616

    PubMed  CAS  Google Scholar 

  3. Begin R, Masse S, Bureau MA (1982) Morphologic features and function of the airways in early asbestosis in the sheep model. Am Rev Respir Dis 126:870–876

    PubMed  CAS  Google Scholar 

  4. Burrows B (1974) Arterial oxygenation and pulmonary hemodynamics in patients with chronic airways obstruction. Am Rev Respir Dis 110S:64–70

    Google Scholar 

  5. Feldman HA (1988) Families of lines: random effects in linear regression analysis. J Appl Physiol 64:1721–1732

    PubMed  CAS  Google Scholar 

  6. Fishman AP (1976) Chronic cor pulmonale. Am Rev Respir Dis 114:775–794

    PubMed  CAS  Google Scholar 

  7. Fletcher EC, Levin DC (1984) Cardiopulmonary hemodynamics during sleep in subjects with chronic obstructive pulmonary disease. Chest 85:6–14

    PubMed  CAS  Google Scholar 

  8. Fujinaka LE, Hyde DM, Plopper CG, Tyler WS, Dungworth DL, Lollini LO (1985) Respiratory bronchiolitis following long-term ozone exposure in Bonnet monkeys: a morphometric study. Exp Lung Res 8:167–190

    PubMed  CAS  Google Scholar 

  9. Garcia JGN, Gray LD, Dodson RF, Callahan KS (1988) Asbestos-induced endothelial cell activation and injury. Am Rev Respir Dis 138:958–964

    PubMed  CAS  Google Scholar 

  10. Glassroth JL, Bernardo J, Lucey EC, Center DM, Jung-Legg Y, Snider GL (1984) Interstitial pulmonary fibrosis induced in hamsters by intratracheally administered chrysotile asbestos. Am Rev Respir Dis 130:242–248

    PubMed  CAS  Google Scholar 

  11. Hulbert WC, McLean T, Wiggs B, Pare PD, Hogg JC (1985) Histamine dose-response curves in guinea pigs. J Appl Physiol 58:625–634

    PubMed  CAS  Google Scholar 

  12. Hulbert WM, McLean T, Hogg JC (1985) The effect of acute airway inflammation on bronchial reactivity in guinea pigs. Am Rev Respir Dis 132:7–11

    PubMed  CAS  Google Scholar 

  13. Hunter C, Barer GR, Shaw JW, Clegg EJ (1974) Growth of the heart and lungs in hypoxic rodents: a model of human hypoxic disease. Clin Sci Mol Med 46:375–391

    PubMed  CAS  Google Scholar 

  14. Icochea A, Cooper BS, Kuhn C (1982) The effect of oxygen on cor pulmonale in experimental emphysema induced by elastase or elastase and beta-aminopropionitrile in hamsters. Am Rev Respir Dis 126:792–796

    PubMed  CAS  Google Scholar 

  15. Kelley J (1990) Cytolines of the lung. Am Rev Respir Dis 141:765–788

    PubMed  CAS  Google Scholar 

  16. Kibler HH, Brody S, Worstell D (1947) Surface area and metabolism of growing guinea pigs. J Nutr 33:331–338

    CAS  Google Scholar 

  17. Lai YL, Lamm JE, Luchtel DL, Hildebrandt J (1984) Massive postmortem bronchoconstriction in guinea pig lungs. J Appl Physiol 56:308–314

    PubMed  CAS  Google Scholar 

  18. Lucey EC, O’Brien JJ, Pereira W, Snider GL (1980) Arterial blood gas values in emphysematous hamsters. Am Rev Respir Dis 121:83–89

    PubMed  CAS  Google Scholar 

  19. Magee F, Wright JL, Wiggs B, Pare PD, Hogg JC (1988) Pulmonary vascular structure and function in chronic obstructive pulmonary disease. Thorax 43:183–189

    Article  PubMed  CAS  Google Scholar 

  20. Mannesmann G, Muller B (1980) Measurement of cardiac output by the thermodilution method in rats: the effect of different volumes and temperatures of the indicator solution on cardiac output measurements and on cardiodynamics and hemodynamics of the anesthetized rat. J Pharm Methods 4:11–18

    Article  CAS  Google Scholar 

  21. McGavran PD, Moore LB, Brody AR (1990) Inhalation of chrysotile asbestos induces rapid cellular proliferation in small pulmonary vessels of mice and rats. Am J Pathol 136:695–705

    PubMed  CAS  Google Scholar 

  22. Murphy KR, Wilson MC, Irvin CG, Glezen LS, Marsh WR, Haslett C, Henson PM, Larsen GL (1986) The requirement for polymorphonuclear leukocytes in the late asthmatic response and heightened airways reactivity in an animal model. Am Rev Respir Dis 134:62–68

    PubMed  CAS  Google Scholar 

  23. O’Byrne PM, Walters EH, Gold BD, Aizawa HA, Fabbri LM, Alpert SE, Nadel JA, Holtzman MJ (1984) Neuptrophil depletion inhibits airways hyperresponsiveness induced by ozone exposure. Am Rev Respir Dis 130:214–219

    PubMed  CAS  Google Scholar 

  24. Olman M, Villespin I, Konopka R, Hartman MT, Pederson C, Moser KM (1989) Pressure—flow relationship in a canine model of chronic large pulmonary arterial thrombotic obstruction. Am Rev Respir Dis 139:A168

    Google Scholar 

  25. Rabinovitch M, Gamble W, Nadas AS, Miettinen OS, Reid L (1979) Rat pulmonary circulation after chronic hypoxia: hemodynamic and structural features. Am J Physiol 236:H818-H827

    PubMed  CAS  Google Scholar 

  26. Rabinovitch M, Gamble WJ, Miettinen OS, Reid L (1981) Age and sex influence on pulmonary hypertension of chronic hypoxia and on recovery. Am J Physiol 240:H62–72

    PubMed  CAS  Google Scholar 

  27. Ruffolo RR (1987) The pharmacology of dobutamione. Am J Med Sci 294:244–248

    Article  PubMed  Google Scholar 

  28. Thurlbeck WM (1967) Internal surface area and other measurements in emphysema. Thorax 95:765–773

    CAS  Google Scholar 

  29. Timms RM, Khaja FU, Williams GW (1985) Hemodynamic response to oxygen therapy in chronic obstructive pulmonary disease. Ann Intern Med 102:29–36

    PubMed  CAS  Google Scholar 

  30. Wach R, Emery CJ, Bee D, Barer GR (1987) Effect of alveolar pressure on pulmonary artery pressure in chronically hypoxic rats. Cardiovasc Res 21:140–150

    Article  PubMed  CAS  Google Scholar 

  31. Weitzenblum E, Schrijen F, Mohan-Kumar T, Colas des Frances V, Lockhart A (1988) Variability of the pulmonary vascular response to acute hypoxia in chronic bronchitis. Chest 94:772–778

    PubMed  CAS  Google Scholar 

  32. Weitzenblum E, Sautegeau A, Ehrhart M, Mammosser M, Pelletier A (1985) Long-term oxygen therapy can reverse the progression of pulmonary hypertension in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 131:493–498

    PubMed  CAS  Google Scholar 

  33. Wilkinson L (1988) SYSTAT: The System for Statistics. Evanston, IL: SYSTAT, Inc.

    Google Scholar 

  34. Williams KI, Higgs GA (1988) Eicosanoids and inflamation. J Pathol 156:101–110

    Article  PubMed  CAS  Google Scholar 

  35. Wright JL, Tron V, Wiggs B, Churg A (1988) Cigarette smoke potentiates asbestos-induced airflow abnormalities. Exp Lung Res 14:537–548

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, J., Wiggs, B. & Churg, A. Pulmonary hypertension induced by amosite asbestos: A physiological and morphologic study in the guinea pig. Lung 169, 31–42 (1991). https://doi.org/10.1007/BF02714139

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02714139

Key words

Navigation