Skip to main content
Log in

Fluorescence resonance energy transfer (FRET) in chemistry and biology: Non-Förster distance dependence of the FRET rate

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Fluorescence resonance energy transfer (FRET) is a popular tool to study equilibrium and dynamical properties of polymers and biopolymers in condensed phases and is now widely used in conjunction with single molecule spectroscopy. In the data analysis, one usually employs the Förster expression which predicts (l/R 6) distance dependence of the energy transfer rate. However, critical analysis shows that this expression can be of rather limited validity in many cases. We demonstrate this by explicitly considering a donor-acceptor system, polyfluorene (PF6)-tetraphenylporphyrin (TPP), where the size of both donor and acceptor is comparable to the distance separating them. In such cases, one may expect much weaker distance (as l/R 2 or even weaker) dependence. We have also considered the case of energy transfer from a dye to a nanoparticle. Here we find l/R 4 distance dependence at large separations, completely different from Förster. We also discuss recent application of FRET to study polymer conformational dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Förster Th 1948Ann. Phys. (Leipzig) 2 55

    Google Scholar 

  2. Förster Th 1965 inModern quantum chemistry, istanbul lectures, Part III: Action of light and organic crystals (ed.) O Sinanoglu (New York: Academic Press) pp 93–137

    Google Scholar 

  3. Perrin J 1927C. R. Acad. Sci. (Paris) 184 1097

    CAS  Google Scholar 

  4. Scholes G D 2003Annu. Rev. Phys. Chem. 54 57

    Article  CAS  Google Scholar 

  5. Lakowicz J R 1983Principles of fluorescence spectroscopy (New York: Plenum)

    Google Scholar 

  6. Deniz A A, Dahan M, Grunwell J R, Ha T, Faulhaber A E, Chemla D S, Weiss S and Schultz P G 1999Proc. Natl. Acad. Sci. USA 96 3670

    Article  CAS  Google Scholar 

  7. Schuler B, Lipman E A and Eaton W A 2002Nature (London) 419 743

    Article  CAS  Google Scholar 

  8. Struck D K, Hoeskstra D and Pagano R E 1981Biochemistry 20 4093

    Article  CAS  Google Scholar 

  9. Dumas F, Sperotto M M, Lebrun M C, Tocanne T F and Mouritsen O G 1997Biophys. J. 73 1940

    CAS  Google Scholar 

  10. Clegg R M, Murchie A I H, Zechel A and Lilley M J 1993Proc. Natl. Acad. Sci. USA 90 2994

    Article  CAS  Google Scholar 

  11. Issac V E, Patel L, Curran T and Abate-Shen C 1995Biochemistry 34 15276

    Article  Google Scholar 

  12. Srinivas G and Bagchi B 2001J. Phys. Chem. B105 2475

    Google Scholar 

  13. Srinivas G and Bagchi B 2002J. Chem. Phys. 116 837

    Article  CAS  Google Scholar 

  14. Murphy M C, Rasnik I, Cheng W and Ha T 2004Biophys. J. 86 2530

    Article  CAS  Google Scholar 

  15. Orritt M 1999Science 285 349, and references therein

    Article  Google Scholar 

  16. Tasch S, List E J W, Hochfilzer C, Leising G, Schlichting P, Rohr U, Geerts Y, Scherf U and Mullen K 1997Phys. Rev. B56 4479

    Google Scholar 

  17. Hu B, Zhang N and Karasz F E 1998J. Appl. Phys. 83 6002

    Article  CAS  Google Scholar 

  18. Fox M A 1999Acc. Chem. Res. 32 201, and references therein

    Article  CAS  Google Scholar 

  19. Nguyen T, Wu J, Doan V, Schwartz B J and Tolbert S H 2000Science 288 652

    Article  CAS  Google Scholar 

  20. Wong K F, Bagchi B and Rossky P J 2004J. Phys. Chem. A108 5752

    Google Scholar 

  21. Yun C S, Javier A, Jennings T, Fisher M, Hira S, Peterson S, Hopkins B, Reich N O and Strouse G F 2005J. Am. Chem. Soc. 127 3115

    Article  CAS  Google Scholar 

  22. Chance R R, Prock A and Silbey R 1978Adv. Chem. Phys. 37 1

    Article  CAS  Google Scholar 

  23. Persson B and Lang N 1982Phys. Rev. B26 5409

    Google Scholar 

  24. Dulkeith E, Morteani A C, Niedereichholz T and Feldmann J 2002Phys. Rev. Lett. 89 203002

    Article  CAS  Google Scholar 

  25. Wang L, Yan R, Huo Z, Wang L, Zeng J, Bao J, Wang X, Peng Q and Li Y 2005Angew. Chem. Int. Ed. 44 6054

    Article  CAS  Google Scholar 

  26. Singh H and Bagchi B 2005Curr. Sci. 89 1710

    CAS  Google Scholar 

  27. Dexter D L 1953J. Chem. Phys. 21 836

    Article  CAS  Google Scholar 

  28. Yang M and Fleming G R 2002Chem. Phys. 55 457

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biman Bagchi.

Additional information

Dedicated to Prof J Gopalakrishnan on his 62nd birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saini, S., Singh, H. & Bagchi, B. Fluorescence resonance energy transfer (FRET) in chemistry and biology: Non-Förster distance dependence of the FRET rate. J Chem Sci 118, 23–35 (2006). https://doi.org/10.1007/BF02708762

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708762

Keywords

Navigation