Skip to main content
Log in

The transport properties of CO2 and CH4 for trimethylsilylated polysulfone membrane

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The transport properties of CO2 and CH4 for TMSPSf (bisphenol A trimethylsilylated polysulfone) were measured, and compared with the values for PSf (bisphenol A polysulfone) and MPSf (bisphenol A methylated polysulfone) to explain the effect of molecular structure of polysulfones on gas transport properties. The permeability coefficients of three polysulfones rank in the order: TMSPSf>PSf>MPSf. TMSPSf is several times more permeable than PSf. The effect of the substituents on chain packing was related to the gas transport properties. The ranking of permeability coefficient correlates well with fractional free volume. The variation of d-spacing is also reasonably consistent with the permeability coefficient. The effects of pressure on the sorption and permeation properties of polysulfones were examined. The permeation properties for a mixture of CO2 and CH4 were also measured and these results were compared with the values of pure gases. The sorbed concentrations and permeability coefficients are well fitted to dual mode model. The permeability coefficients of each gas of binary mixture are reduced than those for pure gases, and the extent of reduction in permeability coefficient is the smallest for TMSPSf, which has the highest value of Langmuir capacity constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitken, C. L., Koros, W. J. and Paul, D. R., “Effect of Structural Symmetry on Gas Transport Properties of Polysulfones”,Macromolecules,25, 3424 (1992).

    Article  CAS  Google Scholar 

  • Balta-Calleja, F. J. and Vonk, C. G., “The Theory of Coherent X-Ray Scattering”, in “X-Ray Scattering of Synthetic Polymers”, Elsevier, Amsterdam, The Netherlands, 1 (1989).

    Google Scholar 

  • Bhide, B. D. and Stern, S. A., “Membrane Processes for the Removal of Acid Gases from Natural Gas. I. Process Configurations and Optimization of Operating Conditions”,J. Membrane Sci.,81, 209 (1993).

    Article  CAS  Google Scholar 

  • Bollinger, W. A., MacLean, D. S. and Narayan, R. S., “Separation Systems for Oil Refining and Production”,Chem. Eng. Prog., Oct., 27 (1982).

  • Bondi, A., “Van der Waals Volume and Radii”,J. Phys. Chem,68, 441 (1964).

    Article  CAS  Google Scholar 

  • Chern, R. T., Koros, W. J., Yuri, B., Hopenberg, H. B. and Stanett, V. T., “Selective Permeation of CO2 and CH4 through Kapton Polyimide; Effects of Penetrant Competition and Gas Phase Nonideality”,J. Polym. Sci, Part B, Polym. Phys. Ed,22, 1061 (1984).

    CAS  Google Scholar 

  • Ghosal, K., Freeman, B. D., Chern, R. T., Alvarez, J. C., de la Campa, J. G., Lozano, A. E. and de Abajo, J., “Gas Separation Properties of Aromatic Polyamides with Sulfone Groups”,Polymer,36, 793 (1995).

    Article  CAS  Google Scholar 

  • Ghosal, K., Chern, R. T., Freeman, B. D., Daly, W. H. and Negulescu, I.I., “Effect of Basic Substituents on Gas Sorption and Permeation in Polysulfones”,Macromolecules,29, 4360 (1996).

    Article  CAS  Google Scholar 

  • Guiver, M. D., Kutowy, O. and ApSimon, J. W., “Functional Group Polysulphones by Bromination-Metalation”,Polymer,30, 1137 (1989a).

    Article  CAS  Google Scholar 

  • Guiver, M. D., ApSimon, J. W. and Kutowy, O., “Preparation of Substituted Polysulfones through Ortho-Metalated Intermediates”, U. S. Patent 4,797,457 (1989b).

  • Hong, S. I., Kim, H. J., Park, H. Y., Kim, T. J. and Jeong, Y. S., “Study of Polysulfone Membrane for Membrane-Covered Oxygen Probe System”,J. of Korean Ind. & Eng. Chemistry,7, 877 (1996).

    CAS  Google Scholar 

  • Ichiraku, Y., Stern, S. A. and Nakagawa, T., “An Investigation of the High Gas Permeability of Poly(l-trimethylsilyl-1-propyne)”,J. Membrane Sci.,34, 5 (1987).

    Article  CAS  Google Scholar 

  • Jacobson, S. H., “Computer Assisted Analysis of X-Ray Scattering for Polymeric Gas Separation and Barrier Materials”,Polym. Prepr.,32, 39 (1991).

    Google Scholar 

  • Resting, R. E. and Fritsche, A. K., “Theory of Gas Transport in Membranes”, in “Polymeric Gas Separation Membranes”, John Wiley & Sons, New York, NY, 19 (1993).

    Google Scholar 

  • Kim, H. J. and Hong, S. I., “The Sorption and Permeation of CO2 and CH4 for Dimethylated Polysulfone Membrane”,KJChE,14(3), 168 (1997).

    CAS  Google Scholar 

  • Kim, T. H., Koros, W. J., Husk, G. R. and O’Brien, K. C., “Relationship between Gas Separation Properties and Chemical Structure in a Series of Aromatic Polyimides”,J. Membrane Sci.,37, 45 (1988).

    Article  Google Scholar 

  • Koros, W. J. and Chern, R. T., “Separation of Gaseous Mixtures Using Polymer Membranes”, in Rousseau, R. W. (Ed.), “Handbook of Separation Process”, Wiely-Interscience, New York, NY, 862 (1987).

    Google Scholar 

  • Koros, W. J. and Fleming, G. K., “Membrane-Based Gas Separation”,J. Membrane Sci.,83, 1 (1993).

    Article  CAS  Google Scholar 

  • McHattie, J. S., Koros, W. J. and Paul, D. R., “Effect of Isopropylidene Replacement on Gas Transport Properties of Polycarbonates”,J. Polym. Sci, Part B, Polym. Phys. Ed.,29, 731 (1991a).

    Article  CAS  Google Scholar 

  • McHattie, J. S., Koros, W. J. and Paul, D. R., “Gas Transport Properties of Polysulphones: 1. Role of Symmetry of Methyl Group Placement on Bisphenol Rings”,Polymer,32, 840 (1991b).

    Article  CAS  Google Scholar 

  • McHattie, J. S., Koros, W. J. and Paul, D. R., “Gas Transport Properties of Polysulphones: 2. Effect of Bisphenol Connector Groups”,Polymer,32, 2618 (1991c).

    Article  CAS  Google Scholar 

  • McHattie, J. S., Koros, W. J. and Paul, D. R., “Gas Transport Properties of Polysulphones: 3. Comparison of Tetramethyl-Substituted Bisphenols”,Polymer,33, 1701 (1992).

    Article  CAS  Google Scholar 

  • Mulder, M., “Materials and Material Properties”, in “Basic Principles of Membrane Technology”, Kluwer Academic Publishers, Dordrecht, The Netherlands, 17 (1991).

    Google Scholar 

  • Muruganandam, N., Koros, W. J. and Paul, D. R., “Gas Sorption and Transport in Substituted Polycarbonates”,J. Polym. Sci, PartB, Polym. Phys. Ed.,25, 1999 (1987).

    Article  CAS  Google Scholar 

  • Paul, D. R. and Koros, W. J., “Effect of Partially Immobilizing Sorption and Permeability on the Diffusion Time Lag”,J. Polym. Sci, Part B, Polym. Phys. Ed.,14, 675 (1976).

    CAS  Google Scholar 

  • Pixton, M. R. and Paul, D. R., “Gas Transport Properties of Adamantane-Based Polysulfones”,Polymer,36, 3165 (1995).

    Article  CAS  Google Scholar 

  • Rautenbach, R. and Welsch, K., “Treatment of Landfill Gas by Gas-Permeation-Pilot Plant Results and Comparison to Alternatives”,J. Memrane Sci.,87, 107 (1994).

    Article  CAS  Google Scholar 

  • Stern, S. A., “Polymers for Gas Separations: The Next Decade”,J. Membrane. Sci.,94, 1 (1994).

    Article  Google Scholar 

  • Van Krevelen, D. W., “Volumetric Properties”, in “Properties of Polymers”, Elsevier, Amsterdam, The Netherlands, 71 (1990).

    Google Scholar 

  • Vieth, W. R., Tam, P. M. and Michaels, A. S., “Dual Sorption Mechanisms in Glassy Polystyrenes”,J. Colloid Interface Sci.,22, 360 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HJ., Hong, SI. The transport properties of CO2 and CH4 for trimethylsilylated polysulfone membrane. Korean J. Chem. Eng. 14, 382–389 (1997). https://doi.org/10.1007/BF02707056

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02707056

Key words

Navigation