Skip to main content
Log in

Bed-to-wall heat transfer characteristics in a circulating fluidized bed

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The bed-to-wall heat transfer coefficients were measured in a circulating fluidized bed of FCC particles (dp = 65 μm). The effects of gas velocity (1.0–4.0 m/s), solid circulation rate (10–50 kg/m2s) and particle suspension density (15–100 kg/m3) on the bed-to-wall heat transfer coefficient have been determined in a circulating fluidized bed (0.1 m-ID x 5.3 rn-high). The heat transfer coefficient strongly depends on particle suspension density, solid circulation rate, and gas velocity. The axial variation of heat transfer coefficients is a strong function of the axial solid holdup profile in the riser. The obtained heat transfer coefficient in terms of Nusselt number has been correlated with the pertinent dimensionless groups

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arena, U., Cammarato, A. and Piston, L., “High Velocity Fluidization Behavior of Solids in a Laboratory Scale Circulating Fluidized Bed”, CFB Technology., Basu, P. eds, Pergamon Press, New York, 119 (1986).

    Google Scholar 

  • Bai, D. R., Jin, Y., Yu, Z. Q. and Zhu, J. X., “The Axial Distribution of the Cross-Sectionally Averaged Voidage in Fast Fluidized Beds”,Powder Technol.,71, 51 (1992).

    Article  CAS  Google Scholar 

  • Baskakov, A. P., Maskaev, V. K., Ivanov, I. V. and Usoltsev, A. G., “Experimental Study of Heat Transfer from the Wall of a Channel to a CFB”,J. Eng. Physics,59, 1570 (1991).

    Article  Google Scholar 

  • Basu, P. and Fraser, S. A., “Circulating Fluidized Bed Boiler: Design and Operation”, Butterworth-Heinemann, Boston (1991).

    Google Scholar 

  • Basu, P. and Nag, P. K., “An Investigation into Heat Transfer in Circulating Fluidized Beds”,Int. J. Heat Mass Transfer,30, 2399 (1987).

    Article  CAS  Google Scholar 

  • Chen, C. C. and Chen, C. L., “Experimental Study of Bed-to-Wall Heat Transfer in a Circulating Fluidized Bed”,Chem. Eng. Sci.,47, 1017 (1992).

    Article  CAS  Google Scholar 

  • Dou, S., “Heat Transfer Characteristics in Circulating Fluidized Beds”, Ph.D. Dissertation, Lehigh University, Bethlehem, USA (1991).

    Google Scholar 

  • Glicksman, L. R., “Circulating Fluidized Bed Heat Transfer”, CFB Technology II, Basu, P. and Large, J. F., eds., Pergamon Press, New York, 13 (1988).

    Google Scholar 

  • Grace, J. R., “Heat Transfer in Circulating Fluidized Beds”, CFB Technology, Basu, P. eds., Pergamon Press, New York, 63 (1986).

    Google Scholar 

  • Han, G. Y., “Experimental Study of Radiative and Particle Convective Heat Transfer in Fast Fluidized Beds”, Ph.D. Dissertation, Lehigh University, Bethlehem, U.S.A. (1992).

    Google Scholar 

  • Hartge, E. V., Li, Y. and Werther, J., “Analysis of the Local Structure of Two-Phase Flow in a Fast Fluidized Bed”, CFB Technology, Basu, P. eds., Pergamon Press, Canada, 153 (1986).

    Google Scholar 

  • Holman, J. P., “Heat Transfer”, McGraw-Hill, New York (1986).

    Google Scholar 

  • Kobro, H. and Brereton, C. M. H., “Control and Fuel Flexibility of Circulating Fluidized Bed”, CFB Technology, Basu, P. eds., Pergamon Press, New York, 263 (1986).

    Google Scholar 

  • Li, Y. and Kwauk, M., “The Dynamics of Fast Fluidization”, Fluidization, Grace and Masten eds., Plenum Press, New York, 537 (1980).

    Google Scholar 

  • Nag, P. K. and Moral, M. N. A., “Effect of Probe Size Heat Transfer at the Wall in a CFB”,Int. J. Energy Research,14, 965 (1990).

    Article  CAS  Google Scholar 

  • Namkung, W., Cho, Y. J. and Kim, S. D., “Axial Solid Holdup Distribution in a Circulating Fluidized Bed”,Hwahak Konghak,32, 241 (1994).

    CAS  Google Scholar 

  • Rhodes, M. J. and Geldart, D., “The Hydrodynamics of Re-Circulating Fluidized Beds”, CFB Technology, Basu, P. eds., Pergamon Press, New York, 194 (1986).

    Google Scholar 

  • Wu, R. L., Lim, C. J., Chaouki, J. and Grace, J. R., “Heat Transfer from a Circulating Fluidized Bed to Membrane Waterwall Surfaces”,AIChE J.,33, 1888 (1987).

    Article  CAS  Google Scholar 

  • Wu, R. L., Grace, J. R., Lim, C. J. and Brereton, C. M. H., Suspension-to-Surface Heat Transfer in a Circulating Fluidized Bed Combustor”,AIChE J.,35, 1685 (1989a).

    Article  CAS  Google Scholar 

  • Wu, R. L., Lim, C. J. and Grace, J. R., “The Measurement of Instantaneous Local Heat Transfer Coefficients in a CFB”,Can. J. Chem. Eng.,67,3011 (1989b).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, Y.J., Kim, S.D. & Han, G.Y. Bed-to-wall heat transfer characteristics in a circulating fluidized bed. Korean J. Chem. Eng. 13, 627–632 (1996). https://doi.org/10.1007/BF02706030

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02706030

Key words

Navigation