Skip to main content
Log in

Inflationary string theory?

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The inflationary paradigm provides a robust description of the peculiar initial conditions which are required for the success of the hot Big Bang model of cosmology, as well as of the recent precision measurements of temperature fluctuations within the cosmic microwave background. Furthermore, the success of this description indicates that inflation is likely to be associated with physics at energies considerably higher than the weak scale, for which string theory is arguably our most promising candidate. These observations strongly motivate a detailed search for inflation within string theory, although it has (so far) proven to be a hunt for a fairly elusive quarry. This article summarizes some of the recent efforts along these lines, and draws some speculative conclusions as to what the difficulty in finding inflation might mean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SLAC: A H Guth,Phys. Rev. D23, 347 (1981)

    ADS  Google Scholar 

  2. A Albrecht and P J Steinhardt,Phys. Rev. Lett. 48, 1220 (1982)

    Article  ADS  Google Scholar 

  3. A D Linde,Phys. Lett. B108, 389 (1982)

    ADS  MathSciNet  Google Scholar 

  4. H V Peiriset al, astroph/0302225

  5. V Barger, H-S Lee and D Marfatia, hep-ph/0302150

  6. B Kyae and Q Shan, astro-ph/0302504

  7. J R Ellis, M Raidal and T Yanagida, hep-ph/0303242

  8. A Lue, G D Starkman and T Vachaspati, astroph/0303268

  9. S M Leach and A R Liddle, astro-ph/0306305

  10. A Liddle and D Lyth,Cosmological inflation and large scale structure (Cambridge University Press, 2000)

  11. For reviews with references, see: F Quevedo,Class. Quantum Gravit. 19, 5721 (2002), hep-th/0210292

    Article  MATH  MathSciNet  Google Scholar 

  12. A Linde,Prospects of inflation, hep-th/0402051

  13. G D Coughlan, W Fischler, E W Kolb, S Raby and G G Ross,Phys. Lett. B131, 59 (1983)

    ADS  Google Scholar 

  14. T Banks, D B Kaplan and A E Nelson,Phys. Rev. D49, 779 (1994), hep-ph/9308292

    ADS  Google Scholar 

  15. B de Carlos, J A Casas, F Quevedo and E Roulet,Phys. Lett. B318, 447 (1993), hep-ph/9308325

    ADS  Google Scholar 

  16. M Alishahiha, E Silverstein and D Tong,DBI in the sky, hep-th/0404084

  17. J P Hsu, R Kallosh and S Prokushkin,JCAP 0312, 009 (2003), arXiv:hep-th/0311077

    ADS  Google Scholar 

  18. F Koyama, Y Tachikawa and T Watari, arXiv:hep-th/0311191

  19. H Firouzjahi and S H H Tye,Phys. Lett. B584, 147 (2004); arXiv:hep-th/0312020

    ADS  MathSciNet  Google Scholar 

  20. J P Hsu and R Kallosh,J. High Energy Phys. 0404, 042 (2004); arXiv:hep-th/0402047

    Article  ADS  MathSciNet  Google Scholar 

  21. O DeWolfe, S Kachru and H Verlinde,J. High Energy Phys. 0405, 017 (2004); hep-th/0403123

    Article  ADS  MathSciNet  Google Scholar 

  22. N Iizuka and S P Trivedi,An inflationary model in string theory, hep-th/0403203

  23. M Becker, G Curio and A Krause,Nucl. Phys. 693, 223 (2004), hep-th/0403027

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. S B Giddings, S Kachru and J Polchinski,Phys. Rev. D66, 106006 (2002)

    ADS  MathSciNet  Google Scholar 

  25. S Sethi, C Vafa and E Witten,Nucl. Phys. B480, 213 (1996), hep-th/9606122

    Article  ADS  MathSciNet  Google Scholar 

  26. K Dasgupta, G Rajesh and S Sethi,J. High Energy Phys. 9908, 023 (1999), hep-th/9908088

    Article  ADS  MathSciNet  Google Scholar 

  27. P Candelas, G T Horowitz, A Strominger and E Witten,Nucl. Phys. B258, 46 (1985) 46

    Article  ADS  MathSciNet  Google Scholar 

  28. S Kachru, R Kallosh, A Linde and S P Trivedi,Phys. Rev. D68, 046005 (2003), hep-th/0301240

    ADS  MathSciNet  Google Scholar 

  29. E Cremmer, B Julia, J Scherk, S Ferrara, L Girardello and P van Nieuwenhuizen,Nucl. Phys. B147, 105 (1979)

    Article  ADS  Google Scholar 

  30. E Witten,Phys. Lett. B155, 151 (1985)

    ADS  MathSciNet  Google Scholar 

  31. C P Burgess, A Font and F Quevedo,Nucl. Phys. B272, 661 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  32. E Cremmer, S Ferrara, C Kounnas and D V Nanonpoulos,Phys. Lett. B133, 61 (1983)

    ADS  Google Scholar 

  33. J Ellis, A B Lahanas, D V Nanopoulos and K Tamvakis,Phys. Lett. B134, 429 (1984)

    ADS  Google Scholar 

  34. J P Derendinger, L E Ibanez and H P Milles,Phys. Lett. B155, 65 (1985)

    ADS  Google Scholar 

  35. M Dine, R Rohm, N Seiberg and E Witten,Phys. Lett. B156, 55 (1985)

    ADS  MathSciNet  Google Scholar 

  36. C P Burgess, J-P Derendinger, F Quevedo and M Quirós,Phys. Lett. B348, 428 (1995), hep-th/9501065;Ann. Phys. 250, 193 (1996), hep-th/9505171

    ADS  Google Scholar 

  37. C Escoda, M Gómez-Reino and F Quevedo,J. High Energy Phys. 0311, 065 (2003), hep-th/0307160

    Article  ADS  Google Scholar 

  38. C P Burgess, R Kallosh and F Quevedo,J. High Energy Phys. 0310, 056 (2003), arXiv:hep-th/0309187

    ADS  MathSciNet  Google Scholar 

  39. A Saltman and E Silverstein,The scaling of the no scale potential and de Sitter model building, hep-th/0402135

  40. F Denef, M R Douglas and B Florea,J. High Energy Phys. 0406, 034 (2004), hep-th/0404257

    Article  ADS  MathSciNet  Google Scholar 

  41. D Robbins and S Sethi,A barren landscape, hep-th/0405011

  42. According to ref [19] the required non-perturbative physics can arise for two-modulus models, however

  43. J J Blanco-Pillado, C P Burgess, J M Cline, C Escoda, M Gómez-Reino, R Kallosh, A Linde and F Quevedo,Racetrack inflation, hep-th/0406230

  44. C P Burgess, A de la Macorra, I Maksymyk and F Quevedo,J. High Energy Phys. 9809, 007 (1998) (30 pages), hep-th/9808087

    Article  ADS  Google Scholar 

  45. This is a ‘modified’ race-track because the original race-track models [23] —which did not inflate —did not include the crucial parameter W0

  46. N V Krasnikov,Phys. Lett. B193, 37 (1987)

    ADS  Google Scholar 

  47. L J Dixon, inThe rice meeting: Proceedings edited by B Bonner and H Miettinen (World Scientific, Singapore, 1990)

    Google Scholar 

  48. T R Taylor,Phys. Lett. B252, 59 (1990)

    ADS  Google Scholar 

  49. B de Carlos, J A Casas and C Muñoz,Nucl. Phys. B399, 623 (1993), hep-th/9204012

    Article  ADS  Google Scholar 

  50. A D Linde,Phys. Lett. B162, 281 (1985)

    ADS  Google Scholar 

  51. A D Linde, D A Linde and A Mezhlumian,Phys. Rev. D49, 1783 (1994), gr-qc/9306035

    ADS  Google Scholar 

  52. P J Steinhardt, inThe very early universe edited by G W Gibbons, S W Hawking and S Siklos (Cambridge University Press, 1983)

  53. A D Linde,Nonsingular regenerating inflationary universe (Cambridge University preprint Print-82-0554, {dy1982})

  54. A Vilenkin,Phys. Rev. D27, 2848 (1983)

    ADS  MathSciNet  Google Scholar 

  55. A D Linde,Phys. Lett. B327, 208 (1994), astro-ph/9402031

    ADS  Google Scholar 

  56. A D Linde and D A Linde,Phys. Rev. D50, 2456 (1994), hep-th/9402115

    ADS  MathSciNet  Google Scholar 

  57. A Vilenkin,Phys. Rev. Lett. 72, 3137 (1994)

    Article  ADS  Google Scholar 

  58. R Brustein and S P de Alwis,Moduli potentials in string compactifications with fluxes: Mapping the discretuum, arXiv:hep-th/0402088

  59. R Bousso and J Polchinski,J. High Energy Phys. 0006, 006 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  60. L Susskind,The anthropic landscape of string theory, hep-th/0302219

  61. {au{gnT} {fnBanks}}, {au{gnM} {fnDine}} and {au{gnE} {fnGorbatov}},Is there a string theory landscape?, hep-th/0309170

  62. G R Dvali and S H H Tye,Phys. Lett. B450, 72 (1999), hep-ph/9812483

    ADS  MathSciNet  Google Scholar 

  63. C P Burgess, M Majumdar, D Nolte, F Quevedo, G Rajesh and R J Zhang,J. High Energy Phys. 0107, 047 (2001), hep-th/0105204

    Article  ADS  MathSciNet  Google Scholar 

  64. G R Dvali, Q Shafi and S Solganik,D-brane inflation, hep-th/0105203

  65. S Kachru, R Kallosh, A Linde, J Maldacena, L McAllister and S P Trivedi,JCAP 0310, 013 (2003), hep-th/0308055

    ADS  MathSciNet  Google Scholar 

  66. S Buchan, B Shlaer, H Stoica and S H H Tye,Inter-brane interactions in compact spaces and brane inflation, hep-th/0311207

  67. J Garcia-Bellido, R Rabadan and F Zamora,J. High Energy Phys. 0201, 036 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  68. N Jones, H Stoica and S H H Tye,J. High Energy Phys. 0207, 051 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  69. M Gómez-Reino and I Zavala,J. High Energy Phys. 0209, 020 (2002)

    Article  Google Scholar 

  70. C P Burgess, P Martineau, F Quevedo, G Rajesh and R J Zhang,J. High Energy Phys. 0203, 052 (2002), hep-th/0111025

    Article  ADS  MathSciNet  Google Scholar 

  71. C Herdeiro, S Hirano and R Kallosh,J. High Energy Phys. 0112, 027 (2001), hep-th/0110271

    Article  ADS  MathSciNet  Google Scholar 

  72. K Dasgupta, C Herdeiro, S Hirano and R Kallosh,Phys. Rev. D65, 126002 (2002), hep-th/0203019

    ADS  MathSciNet  Google Scholar 

  73. See for instance: E J Copeland, A R Liddle, D H Lyth, E D Stewart and D Wands,Phys. Rev. D49, 6410 (1994), astro-ph/9401011

    ADS  Google Scholar 

  74. C P Burgess, J M Cline, H Stoica and F Quevedo,Inflation in realistic D-brane models, hep-th/0403119

  75. S Sarangi and S H H Tye,Phys. Lett. B536, 185 (2002), hep-th/0204074

    ADS  Google Scholar 

  76. G Dvali, R Kallosh and A Van Proeyen,J. High Energy Phys. 0401, 035 (2004), hep-th/0312005

    Article  ADS  Google Scholar 

  77. G Dvali and A Vilenkin,JCAP 0403, 010 (2004), hep-th/0312007

    ADS  MathSciNet  Google Scholar 

  78. E J Copeland, R C Myers and J Polchinski,J. High Energy Phys. 0406, 013 (2004), hep-th/0312067

    Article  ADS  MathSciNet  Google Scholar 

  79. L Leblond and S H H Tye,J. High Energy Phys. 0403, 055 (2004), hep-th/0402072

    Article  ADS  MathSciNet  Google Scholar 

  80. K Dasgupta, J P Hsu, R Kallosh, A Linde and M Zagermann,D3/D7 brune inflation and semilocal strings, hep-th/0405247

  81. A D Linde,Phys. Rev. D49, 748 (1994), astroph/9307002

    ADS  Google Scholar 

  82. D H Lyth and E D Stewart,Phys. Rev. D53, 1784 (1996), hep-ph/9510204

    ADS  Google Scholar 

  83. J A Adams, G G Ross and S Sarkar,Nucl. Phys. B503, 405 (1997), hep-ph/9704286

    Article  ADS  Google Scholar 

  84. G German, G G Ross and S Sarkar,Phys. Lett. B469, 46 (1999), hep-ph/9908380;Nucl. Phys. B608, 423 (2001), hep-ph/0103243

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgess, C.P. Inflationary string theory?. Pramana - J Phys 63, 1269–1282 (2004). https://doi.org/10.1007/BF02704894

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704894

Keywords

PACS No.

Navigation