Skip to main content
Log in

Stress-induced evolution and the biosafety of genetically modified microorganisms released into the environment

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

This article is focused on the problems of reduction of the risk associated with the deliberate release of genetically modified microorganisms (GMMs) into the environment. Special attention is given to overview the most probable physiological and genetic processes which could be induced in the released GMMs by adverse environmental conditions, namely: (i) activation of quorum sensing and the functions associated with it, (ii) entering into a state of general resistance, (iii) activation of adaptive mutagenesis, adaptive amplifications and transpositions and (iv) stimulation of inter-species gene transfer. To reduce the risks associated with GMMs, the inactivation of their key genes responsible for stress-stimulated increase of viability and evolvability is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AHLs:

N-acyl-L-homoserine lactones

CF:

cystic fibrosis

2,4-D:

2,4-dichlorophenoxyacetic acid

GMMs:

genetically modified microorganisms

HSP:

heat shock proteins

PAHs:

polycyclic aromatic hydrocarbons

PHA:

polyhydroxyalkanoate

PHB:

poly(3-hydroxybutyrate)

SSR:

starvation-stress response

References

  • Aleshkin G I, Kadzhaev K V and Markov A P1998 High and low UV-dose responses in SOS-induction of the precise excision of transposons Tn1, Tn5 and Tn10 inEscherichia coli;Mutat. Res. 401 179–191

    Article  CAS  PubMed  Google Scholar 

  • Arber W 2000 Genetic variation: molecular mechanisms and impact on microbial evolution;FEMS Microbiol. Rev. 24 1–7

    Article  CAS  PubMed  Google Scholar 

  • Arsene F, Tomoyasu T and Bukau B 2000 The heat shock response ofEscherichia coli;Int. J. Food Microbiol. 55 3–9

    Article  CAS  PubMed  Google Scholar 

  • Barcus V and Murray N 1995 Barriers to recombination: restriction; inPopulation genetics of bacteria (eds) S Baumberg, J Young, E Wellington and J Saunders (Cambridge: University Press) pp 31–58

    Google Scholar 

  • Baud-Grasset S, Baud-Grasset F, Bifulco J M, Meier J R and Ma T H 1993 Reduction of genotoxicity of a creosote-contaminated soil after fungal treatment determined by theTradescantia micronucleus test;Mutat. Res. 303 77–82

    Article  CAS  PubMed  Google Scholar 

  • Boe L, Danielsen M, Knudsen S, Petersen J B, Maymann J and Jensen P R 2000 The frequency of mutators in populations ofEscherichia coli;Mutat. Res. 448 47–55

    Article  CAS  PubMed  Google Scholar 

  • Bouma J E and Lenski R E 1988 Evolution of a bacteria/plasmid association;Nature (London) 335 351–352

    Article  CAS  Google Scholar 

  • Boyandin A N, Lobova T I, Krylova T Y, Kargatova T V, Popova L and Yu Pechurkin N S 2000 Effects of Salinity on the Adaptive Capacity of Recombinant Strains ofEsherichia coli andBacillus subtilis (Russ.);Microbologia 69 243–247

    Google Scholar 

  • Bridges B A 2001 Hypermutation in bacteria and other cellular systems;Philos. Trans. R. Soc. London B Biol. Sci. 356 29–39

    Article  CAS  PubMed  Google Scholar 

  • Brooks L R, Hughes T J, Claxton L D, Austern B, Brenner R and Kremer 1998 Bioassay directed fractionation and chemical identification of mutagens in bioremediated soils;Environ. Health Perspect. (Suppl. 6) 106 1435–1440

    Article  CAS  Google Scholar 

  • Brown E W, LeClerc E, Li B, Payne W L and Cebula T A 2001 Phylogenetic Evidence for Horizontal Transfer ofmutS Alleles among Naturally OccurringEscherichia coli Strains;J. Bacteriol. 183 1631–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bull H J, McKenzie G J, Hastings P J and Rosenberg S M. 2000 Evidence that stationary-phase hypermutation in theEscherichia coli chromosome is promoted by recombination;Genetics 154 1427–1437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chilley P M and Wilkins B M 1995 Distribution of theardA family of antirestriction genes on conjugative plasmids;Microbiology 141 2157–2164

    Article  CAS  PubMed  Google Scholar 

  • Chow K C 2000 Hsp70(DnaK) — an evolution facilitator?;Trends Genet. 16 484–485

    Article  CAS  PubMed  Google Scholar 

  • Chow K C and Tung W L 2000 Magnetic field exposure stimulates transposition through the induction ofDnaK/J synthesis;Biochem. Biophys. Res. Commun. 270 745–748

    Article  CAS  PubMed  Google Scholar 

  • Chumakov M I 2001 Transfer of T-DNA from agrobacteria into plant cells through cell walls and membranes (Russ.);Mol. Gen. Mikrobiol. Virusol. 1 13–29

    Google Scholar 

  • Cook R J, Bruckart W L, Coulson J R, Goettel M S, Humber R A, Lumsden R D, Maddox J V, McManus M L, Moore L, Meyer S F, Quimby P C Jr, Stack J P and Vaughn J L1996 Safety of Microorganisms Intended for Pest and Plant Disease Control: A Framework for Scientific Evaluation;Biol. Control 7 333–351

    Article  Google Scholar 

  • Davey M E and O’Toole G A 2000 Microbial biofilms: from ecology to molecular genetics;Microbiol. Mol. Biol. Rev. 64 847–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies J and Webb V 1998 Antibiotic resistance in bacteria; inEmerging infections (ed.) R M Krause (New York: Academic Press) pp 239–273

    Chapter  Google Scholar 

  • Davison J 1999 Genetic exchange between bacteria in the environment;Plasmid 42 73–91

    Article  CAS  PubMed  Google Scholar 

  • Del’ver E P, Agafonova O V, Tupikova E E, Vorob’eva E P and Belogurov A A 1998 System of regulating expression of antirestriction genesardA andardB, coding for the transmissiveIncN plasmid pKM101;Mol. Biol. (Mosk) 32 242–248

    Google Scholar 

  • Denamur E, Lecointre G, Darlu P, Tenaillon O, Acquaviva C, Sayada C, Sunjevaric I, Rothstein R, Elion J, Taddei F, Radman M and Matic I 2000 Evolutionary implications of the frequent horizontal transfer of mismatch repair genes;Cell 103 711–721

    Article  CAS  PubMed  Google Scholar 

  • Diamant S, Ben-Zvi A P, Bukau B, Goloubinoff P 2000 Sizedependent disaggregation of table protein aggregates by theDnaK chaperone machinery;J. Biol. Chem. 275 21107–21113

    Article  CAS  PubMed  Google Scholar 

  • Diaz Ricci J C and Hernandez M E 2000 Plasmid effects onEscherichia coli metabolism;Crit. Rev. Biotechnol. 20 79–108

    Article  Google Scholar 

  • Dimpfl J and Echols H 1989 Duplication mutation as an SOS response inEscherichia coli enhanced duplication formation by a constitutively activatedRecA;Genetics 123 255–260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doblhoff-Dier O, Bahmayer H, Bennet A, Brunius G, Burki K, Cantley M, Collins C, Crooy P, Elmqvist A, Frontali-Botti C, Havenaar R, Haymerle H, Lelieveld H, Lex M, Mahler J L, Martinez L, Mosgaard C, Olsen L, Pazlarova J, Ruddan F, Sarvas M, Stepankova H, Tzotzos G, Wagner K and Werner R 1999 Safe biotechnology 9: values in risk assessment for the environmental application of microorganisms;Trends Biotechnol. 17 307–311

    Article  CAS  PubMed  Google Scholar 

  • Dorn P B and Salanitro J P 2000 Temporal ecological assessment of oil contaminated soils before and after bioremediation;Chemosphere 40 419–426

    Article  CAS  PubMed  Google Scholar 

  • Dri A-M and Morerau P L 1994 Control of theLexA regulon by pH: evidence for a reversible incativation of theLexA repressor during the growth cycle ofEscherichia coli;Mol. Microbiol. 12 621–629

    Article  CAS  PubMed  Google Scholar 

  • Droge M, Puhler A and Selbitschka W 1998 Horizontal gene transfer as a biosafety issue: a natural phenomenon of public concern;J. Biotechnol. 64 75–90

    Article  CAS  PubMed  Google Scholar 

  • Eberl L 1999 N-Acyl Homoserine lactone-mediated Gene Regulation in Gram-negative Bacteria;System Appl. Microrbiol. 22 493–506

    Article  CAS  Google Scholar 

  • Edwards, R, Helm A and S Maloy S 1999 Increasing DNA transfer efficiency by temporary inactivation of host restriction;BioTechniques 26 892–900

    Article  CAS  PubMed  Google Scholar 

  • Eichenbaum Z and Livneh Z. 1998 UV light induces IS10 transposition inEscherichia coli;Genetics 149 1173–1181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fani R, Gallo R, Fancelli S, Mori E, Tamburini E and Lazcano A 1998 Heterologous gene expression in anEscherichia coli population under starvation stress conditions;J. Mol. Evol. 47 363–368

    Article  CAS  PubMed  Google Scholar 

  • Ford T 1994 Pollutant effects on the microbial ecosystem;Environ. Health Perspect. (Suppl.) 102 45–48

    Article  Google Scholar 

  • Foster P L 1999 Mechanisms of stationary phase mutation: a decade of adaptive mutation;Annu. Rev. Genet. 33 57–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster P L 2000 Adaptive mutation: implications for evolutionBioEssays 22 1057–1074

    Article  Google Scholar 

  • Fulthorpe R R, Rhodes A N and Tiedje J M 1996 Pristine soils mineralize 3-chlorobenzoate and 2,4-dichlorophenoxyacetate via different microbial populations;Appl. Environ. Microbiol. 62 1159–1166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fulthorpe R R and Schofield L N 1999 A comparison of the ability of forest and agricultural soils to mineralize chlorinated aromatic compounds;Biodegradation 10 235–244

    Article  CAS  PubMed  Google Scholar 

  • Fuqua C and Greenberg 1998 Cell-to-cell communication inEscherichia coli andSalmonella typhimurium: They may be talking, but who’s listening?;Proc. Natl. Acad. Sci. USA 95 6571–6572

    Article  CAS  PubMed  Google Scholar 

  • Giraud A, Matic I, Tenaillon O, Clara A, Radman M, Fons M and Taddei F 2001 Costs and Benefits of High Mutation Rates: Adaptive Evolution of Bacteria in the Mouse Gut;Science 291 2606–2608

    Article  CAS  PubMed  Google Scholar 

  • Glessner A Smit R S Iglewski B H and Robinson J B 1999 Roles ofPsedomonas aaeruginosa las andrhl quorum sensing systems in control of twitching motility;J. Bacteriol. 181 1623–1629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goloubinoff P, Mogk A, Zvi A P, Tomoyasu T and Bukau B 1999 Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network;Proc. Natl. Acad. Sci. USA 96 13732–13737

    Article  CAS  PubMed  Google Scholar 

  • Hafner L M and MacPhee D G 1991 Precise excision of Tn10 inSalmonella typhimurium: effects of mutations in thepolA, dam, mutH andmutB genes and of methionine or ethionine in the plating medium;Mutat. Res. 263 179–184

    Article  CAS  PubMed  Google Scholar 

  • Harris R S, Feng G, Ross K J, Sidhu R, Thulin C, Longerich S, Szigety S K, Hastings P J, Winkler M E and Rosenberg S M 1999 Mismatch repair is diminished during stationary-phase mutation;Mutat. Res. 437 51–60

    Article  CAS  PubMed  Google Scholar 

  • Hartke A, Giard J C, Laplace J M and Auffray Y 1998 Survival ofEnterococcus faecalis in an oligotrophic microcosm: changes in morphology, development of general stress resistance, and analysis of protein synthesis;Appl. Environ. Microbiol. 64 4238–4245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hastings P J, Bull H J, Klump J R and Rosenberg S M 2000 Adaptive amplification: an inducible chromosomal instability mechanism;Cell 103 723–731

    Article  CAS  PubMed  Google Scholar 

  • Hengge-Aronis R 2000 A role for the Sigma S subunit of RNA polymerase in the regulation of bacterial virulence;Adv. Exp. Med. Biol. 485 85–93

    Article  CAS  PubMed  Google Scholar 

  • Hiom K, Thomas S M and Sedgwick S G 1991 Different mechanisms for SOS induced alleviation of DNA restriction inEscherichia coli;Biochimie 73 399–405

    Article  CAS  PubMed  Google Scholar 

  • Hiom K J and Sedgwick S G 1992 Alleviation ofEcoK DNA restriction inEscherichia coli and involvementof umuDC activity;Mol. Gen. Genet. 231 265–275

    CAS  PubMed  Google Scholar 

  • Holliger C, Gaspard S, Glod G, Heijman C, Schumacher W, Schwarzenbach R P and Vazquez F 1997 Contaminated environments in the subsurface and bioremediation: organic contaminants;FEMS Microbiol. Rev. 20 517–523

    Article  CAS  PubMed  Google Scholar 

  • Houndt T D and Ochman H 2000 Long-Term Shifts in Patterns of Antibiotic Resistance in Enteric Bacteria;Appl. Environ. Microbiol. 66 5406–5409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes T J, Claxton L D, Brooks L, Warren S, Brenner R and Kremer F 1998 Genotoxicity of bioremediated oils from the Reilly Tar site, St. Louis Park, Minnesota;Environ. Health Perspect. (Suppl. 6) 106 1427–1433

    Article  CAS  PubMed Central  Google Scholar 

  • Hund K and Traunspurger W 1994 Ecotox-evaluation strategy for soil bioremediation exemplified for a PAH-contaminated site;Chemosphere 29 371–390

    Article  CAS  PubMed  Google Scholar 

  • Jolivet-Gougeon A, David-Jobert S, Tamanai-Shacoori Z, Monard Ch and Cormier M 2000 Osmotic Stress-Induced Genetic Rearrangements inEscherichia coli H10407 Detected by Randomly Amplified Polymorphic DNA Analysis;Appl. Environ. Microbiol. 66 5484–5487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurgen B, Lin H Y, Riemschneider S, Scharf C, Neubauer P, Schmid R, Hecker M and Schweder T 2000 Monitoring of genes that respond to overproduction of an insoluble recombinant protein inEscherichia coli glucose-limited fed-batch fermentations;Biotechnol. Bioeng. 70 217–224

    Article  CAS  PubMed  Google Scholar 

  • Kamagata Y, Fulthorpe R R, Tamura K, Takami H, Forney L J and Tiedje J M 1997 Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria;Appl. Environ. Microbiol. 63 2266–2272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan D L, Mello C, Sano T, Cantor C and Smith C 1999 Streptavidin-based containment systems for genetically engineered microorganisms;Biomol. Eng. 16 135–140

    Article  CAS  PubMed  Google Scholar 

  • Keasling J D and Bang S 1998 Recombinant DNA techniques for bioremediation and environmentally-friendly synthesis;Curr. Opin. Biotechnol. 9 135–140

    Article  CAS  PubMed  Google Scholar 

  • Kelleher J and Raleigh E 1994 Response to UV damage by fourEscherichia coli K-12 restriction systems;J. Bacteriol. 176 5888–5896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolter R, Siegle D and Torno A 1993 The Stationary phase of bacterial life cycle;Annu. Rev. Microbiol. 47 855–874

    Article  CAS  PubMed  Google Scholar 

  • Kuchma S L and O’Toole G A 2000 Surface-induced and biofilm-induced changes in gene expression;Curr. Opin. Biotechnol. 11 429–433

    Article  CAS  PubMed  Google Scholar 

  • Kuzminov A and Stahl F W 1999 Double stranded repair via theRecBC pathway inEscherichia coli primes DNA replication;Genes Dev. 13 345–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latifi A, Foguno M, Tanakaa K, Williams P and Luzdunski A 1996 A hierarchical quorum sensising cascade inPseudomonas aeruginosa links the transcriptional activatorsLasR andRhlR (VsmR) to expression of the stationary phase sigma factorRpoS;Mol. Micorbiol. 21 1137–1146

    Article  CAS  Google Scholar 

  • Lazazzera B A 2000 Quorum sensing and starvation: signals for entry into stationary phase;Curr. Opin. Microbiol. 3 177–182

    Article  CAS  PubMed  Google Scholar 

  • Lenski R E 1997 The cost of antibiotic resistance — from the perspective of a bacterium;Ciba Found. Symp. 207 131–140; discussion 141–151

    CAS  PubMed  Google Scholar 

  • Levy D D and Cebula T A 2001 Fidelity of replicative DNA inmutS and repair proficientEscherichia coli;Mut. Res. 474 11–14

    Google Scholar 

  • Lieber M M 1998 Environmentally responsive mutator systems: toward a unifying perspective;Riv. Biol. 91 425–457

    CAS  PubMed  Google Scholar 

  • Lindum P W, Antoni U, Christphersen C, Eberl L, Molin S and Givskov M 1998 N-acetyl-L-homoserine lactoneautoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility ofSerratia liquefaciens MG1;J. Bacteriol. 180 6384–6388

    CAS  PubMed  PubMed Central  Google Scholar 

  • LeClerc J E, Li B, Payne W L and Cebula T A 1996 High mutation frequencies amongEscherichia coli andSalmonella pathogens;Science 274 1208–1211

    Article  CAS  PubMed  Google Scholar 

  • Loewen P C, Hu B, Strutinsky J and Sparling R 1998 Regulation in therpoS regulon ofEscherichia coli;Can. J. Microbiol. 44 707–717

    Article  CAS  PubMed  Google Scholar 

  • Long S C and Aelion C M 1999 Metabolite formation and toxicity measurements in evaluating bioremediatio of a jetfuel-contaminated aquifer;Appl. Biochem. Biotechnol. 76 79–97

    Article  CAS  PubMed  Google Scholar 

  • Lundblad V and Kleckner N 1985 Mismatch repair mutations ofEscherichia coli K12 enhance transposon excision;Genetics 109 3–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mah T F and O’Toole G A 2001 Mechanisms of biofilm resistance to antimicrobial agents;Trends Microbiol. 9 34–39

    Article  CAS  PubMed  Google Scholar 

  • Matin A 1991 The molecular basis of carbon-starvation-induced general resistance inEscherichia coli;Mol. Microbiol. 5 3–10

    Article  CAS  PubMed  Google Scholar 

  • Matin A 1996 Role of alternate sigma factors in starvation protein synthesis novel mechanisms of catabolite repression;Res. Microbiol. 147 494–505

    Article  CAS  PubMed  Google Scholar 

  • Matic I, Taddei F and Radman M 1996 Genetic barriers among bacteria;Trends Microbiol. 4 69–72

    Article  CAS  PubMed  Google Scholar 

  • Matic I, Taddei F and Radman M 2000a No genetic barriers betweenSalmonella enterica serovartyphimurium andEscherichia coli in SOS-induced mismatch repair-deficient cells;J. Bacteriol. 182 5922–5924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matic I, Taddei F and Radman M 2000b Interspecies recombination and mismatch repair. Generation of mosaic genes and genomes;Methods. Mol. Biol. 152 149–157

    CAS  PubMed  Google Scholar 

  • McClean K H, Winson M K, Fish L, Taylor A, Chhabra S R, Camara M, Daykin M, Lamb J H, Swift S, Bycoroft B W, Stewart G S and Williams P 1997 Quorum sensing andChromobacteruim violaceum: exploitation of violacein production and inhibition for the detection of N-acetyl homoserine lactone;Microbiology 143 3703–3711

    Article  CAS  PubMed  Google Scholar 

  • McKenzie G J, Harris R S, Lee P L and Rosenberg S M 2000 The SOS response regulates adaptive mutation;Proc. Natl. Acad. Sci. USA 97 6646–6651

    Article  CAS  PubMed  Google Scholar 

  • McKenzie G J, Lee P L, Lombardo M-J, Hastings P J and Rosenberg S M 2001 SOS Mutator DNA Polymerase IV Functions in Adaptive Mutation and Not Adaptive Amplification;Mol. Cell 7 571–579

    Article  CAS  PubMed  Google Scholar 

  • McLean R J C, Whiteley M, Stickler D J and Fuqua W C 1997 Evidence of autoinducer activity in naturally-occurring biofilms;FEMS Microbiol. Lett. 154 259–263

    Article  CAS  PubMed  Google Scholar 

  • Mee-Jung Han, Sang Sun Yoon and Sang Yup Lee 2001 Proteome Analysis of Metabolically EngineeredEscherichia coli Producing Poly (3-Hydroxybutyrate);J. Bacteriol. 183 301–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzgar D and Wills C 2000 Evidence for the adaptive evolution of mutation rates;Cell 101 581–584

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhashi S 1993 Drug resistance in bacteria: history, genetics and biochemistry;J. Int. Med. Res. 21 1–14

    Article  CAS  PubMed  Google Scholar 

  • Morrison D A and Lee M S 2000 Regulation of competence for genetic transformation inStreptococcus pneumoniae: a link between quorum sensing and DNA processing genes;Res. Microbiol. 2000151 445–451

    Article  CAS  PubMed  Google Scholar 

  • Motamedi M R, Szigety S K and Rosenberg S M 1999 Double-strand-break repair recombination inEscherichia coli: physical evidence for a DNA replication mechanismin vivo;Genes Dev. 13 2889–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neilsen K M, Bones A M, Smalla K and Elsas van J D 1998 Horizontal gene transfer from transgenic plants to terrestial bacteria — rare event?FEMS Microbiol. Rev. 22 79–103

    Article  Google Scholar 

  • Oleskin A V, Botvinko I V and Tsavkelova E A 2000 Colonial organization and intercellular communication of microorganisms (Russ.);Mikrobiologiya 69 309–327

    CAS  Google Scholar 

  • Oliver A, Canton R, Campo P, Baquero F and Blazquez J 2000 High frequency of hypermutablePseudomonas aeruginosa in cystic fibrosis lung infection;Science 288 1251–1253

    Article  CAS  PubMed  Google Scholar 

  • O’Toole G A, Gibbs K A, Hager P W, Phibbs P V Jr and Kolter R 2000 The global carbon metabolism regulatorCrc is a component of a signal transduction pathway required for biofilm development byPseudomonas aeruginosa;J. Bacteriol. 182 425–431

    Article  PubMed  PubMed Central  Google Scholar 

  • Parsek M R and Greenberg E P 1999 Quorum sensing signals in development ofPseudomonas aeruginosa biofilms;Methods Enzymol. 310 43–55

    Article  CAS  PubMed  Google Scholar 

  • Pearce D A, Bazin M J and Lynch J M 2000 Substrate Concentration and Plasmid Transfer Frequency between Bacteria in a Model Rhizosphere;Microb. Ecol. 40 57–63

    Article  CAS  PubMed  Google Scholar 

  • Peters J E and Benson S A 1995 Redundant transfer of F’ plasmids occurs betweenEscherichia coli cells during nonlethal selections;J. Bacteriol. 177 847–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petit M A, Dimpfl J, Radman M and Echols H 1991 Control of large chromosomal duplications inEscherichia coli by the mismatch repair system;Genetics 129 327–332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pirhonen M, Flego D, Heikinheimo R and Palva E T 1993 A small diffusible signal molecules is responsible for the global control of virulence and exoenzyme production in the plant pathogenErwinia carotovora;EMBO J. 12 2467–2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell S C and Wartell R M 2001 Different characteristics distinguish early versus late arising adaptive mutations inEscherichia coliFC40;Mutat. Res. 473 219–228

    Article  CAS  PubMed  Google Scholar 

  • Prozorov A A 1999 Horizontal gene transfer in bacteria: laboratory simulation, natural populations, genomic data (Russ.);Mikrobiologiya 68 632–646

    CAS  Google Scholar 

  • Radman M, Taddei F and Matic I 2000 Evolution-driving genes;Res. Microbiol. 151 91–95

    Article  CAS  PubMed  Google Scholar 

  • Rice S A, Givskov M, Steinberg P, Kjelleberg S 1999 Bacterial signals and antagonists: the interaction between bacteria and higher organisms;J. Mol. Microbiol. Biotechnol. 1 23–31

    CAS  PubMed  Google Scholar 

  • Riis V, Miethe D and Babel W 1995 Degradation of refinery products and oils from polluted sites by the autochthonous microorganisms of contaminated and pristine soils;Microbiol. Res. 150 323–330

    Article  CAS  PubMed  Google Scholar 

  • Robbe-Saule V, Coynault C and Norel F 1995 The live oral typhoid vaccine Ty21a is arpoS mutant and is susceptible to various environmental stresses;FEMS Microbiol. Lett. 126 171–176

    Article  CAS  PubMed  Google Scholar 

  • Ronchel M C, Ramos C, Jensen L B, Molin S and Ramos J L 1995 Construction and behaviour of biologically contained bacteria for environmental applications in bioremediation;Appl. Environ. Microbiol. 61 2990–2994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ronchel M C and Ramos J L 2001 Dual System To Reinforce Biological Containment of Recombinant Bacteria Designed for Rhizoremediation;Appl. Environ. Microbiol. 67 2649–2656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg S M 1997 Mutation for survival;Curr. Opin. Genet. Dev. 7 829–834

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg S M 2001 Evolving responsively: Adaptive mutation;Nature Rev. Genet. 2 504–515

    Article  CAS  PubMed  Google Scholar 

  • Smith B T and Walker G C 1998 Mutagenesis and more:umuDC and theEscherichia coli SOS response;Genetics 148 1599–1610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sniegowski P D, Gerrish P J R and Lenski R E 1997 Evolution of High Mutation Rates in Experimental Populations ofE. coli;Nature (London) 387 703–705

    Article  CAS  Google Scholar 

  • Sniegowski P D, Gerrish P J, Johnson T and Shaver A 2000 The evolution of mutation rates: separating causes from consequences;Bioessays 22 1057–1066

    Article  CAS  PubMed  Google Scholar 

  • Spector M P 1998 The starvation-stress response (SSR) of Salmonella;Adv. Microb. Physiol. 40 233–279

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan S, Ostling J, Charlton T, de Nys R, Takayama K and Kjellberg S 1998 Extracellular signal molecule(s) involved in the carbon starvation response of marineVibrio sp. strain S14;J. Bacteriol. 180 210–209

    Google Scholar 

  • Stark G R and Wahl G M 1984 Gene amplification;Annu. Rev. Biochem. 37 217–224

    Google Scholar 

  • Suh S J, Silo-Suh L, Woods D E, Hassett D J, West S E and Ohman D E 1999 Effect ofrpoS mutation on the stress response and expression of virulence factors inPseudomonas aeruginosa;J. Bacteriol. 181 3890–3897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taddei F, Matic I, Godelle B and Radman M 1997a To be a mutator; or how pathogenic and commercial bacteria can evolve rapidly;Trends Microbiol. 5 427–428

    Article  CAS  PubMed  Google Scholar 

  • Taddei F, Halliday J A, Matic I and Radman M 1997b Genetic analysis of mutagenesis in agingEscherichia coli colonies;Mol. Gen. Genet. 256 277–281

    Article  CAS  PubMed  Google Scholar 

  • Taddei F, Radman M, Maynard-Smith J, Toupance B, Gouyon P H and Godelle B 1997c Role of mutator alleles in adaptive evolution;Nature (London) 387 700–702

    Article  CAS  Google Scholar 

  • Thorne S H and Williams H D 1997 Adaptation to nutrient starvation inRhizobium leguminosarum bv. Phaseoli: analysis of survival, stress resistance, and changes in macromolecular synthesis during entry to and exit from stationary phase;J. Bacteriol. 179 6894–6901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorne S H and Williams HD 1999 Cell density dependent sravation survival ofRhizibium leguminosarum bv. by phaseoli: identification of the role of an N-acyl homoserinelactone in adaptation to starvation-phase survival;J. Bacteriol. 181 981–990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tolker-Nielsen T and Molin S 2000 Spatial Organisation of Microbial Biofilm Communities;Microb. Ecol. 40 75–84

    CAS  PubMed  Google Scholar 

  • Tortosa P and Dubnau D 1999 Competence for transformation: a matter of taste;Curr. Opin. Microbiol. 2 588–592

    Article  CAS  PubMed  Google Scholar 

  • Tzfira T, Rhee Y, Chen M H, Kunik T and Citovsky V 2000 Nucleic acid transport in plant-microbe interactions: the molecules that walk through the walls;Annu. Rev. Microbiol. 54 187–219

    Article  CAS  PubMed  Google Scholar 

  • Van Delden C and Iglewski B H 1998 Cell-to-cell signalling andPseudomonas aeruginosa infections;Emerg. Infect. Dis. 4 551–560

    Article  PubMed  PubMed Central  Google Scholar 

  • von Bodman S B, Majerczak D R and Coplin D L 1998 A negative regulator mediated quorum sensing control of exopolysaccharides production ofPantoea stewartii subsp. stewartii;Proc. Natl. Acad. Sci. USA 95 7687–7692

    Article  Google Scholar 

  • Wagner J and Nohmi T 2000 Escherichia coli DNA polymerase IV mutator activity: genetic requirements and mutational specificity;J. Bacteriol. 182 4587–4595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb C, Moreno M, Wilmes-Riesenberg M, Curtiss R 3rd and Foster J W 1999 Effects of DksA and ClpP protease on sigma S production and virulence inSalmonella typhimurium;Mol. Microbiol. 34 112–123

    Article  CAS  PubMed  Google Scholar 

  • Wilson M and Lindow S E 1993 Release of Recombinant Microorganisms;Annu. Rev. Micorbiol. 47 913–944

    Article  CAS  Google Scholar 

  • Wimpenny J, Manz W and Szewzyk U 2000 Heterogeneity in biofilms;FEMS Microbiol. Rev. 24 661–671

    Article  CAS  PubMed  Google Scholar 

  • Winzer K, Falconer C, Garber N C, Diggle C P, Camara M and Williams P 2000 ThePseudomonas aeruginosa Lectins PA-IL and PA-IIL Are Controlled by Quorum Sensing and byRpoS;J. Bacteriol. 182 6401–6411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood D W, Gong E, Daytkin M M, Williams P and Person L S 1997 N-acyl-homoserine lactone regulation of phenazine gene expression byPseudomonas aureofaciens 30–84 in the wheat rhizosphere;J. Bacteriol. 179 7663–7670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrubel R P, Krimsky S and Anderson M D 1997 Regulatory Oversight of Genetically Engineered Microorganisms: Has Regulation Inhibited Innovation?;Environ. Manage. 21 571–586

    Article  CAS  PubMed  Google Scholar 

  • Wyndham R C, Nakatsu C, Peel M, Cashore A, Ng J and Szilagyi F 1994 Distribution of the catabolic transposon Tn5271 in a groundwater bioremediation system;Appl. Environ. Microbiol. 60 86–93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Velicer G J 1999 Pleiotropic effects of adaptation to a single carbon source for growth on alternative substrates;Appl. Environ. Microbiol. 65 264–269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Velkov V V 1982 Genes Amplification in Prokaryotic and Eukaryotic Systems (Russ.);Genetika 18 529–543

    CAS  Google Scholar 

  • Velkov V V 1996 Environmental Genetic Engineering: Hope or Hazard?;Curr. Sci. 70 823–832

    Google Scholar 

  • Velkov V V 1999 How environmental factors regulate mutagenesis and gene transfer in microorganisms;J. Biosci. 24 529–559

    Article  CAS  Google Scholar 

  • Velkov V V 2000 The Risks Assessment of the Release of the Genetically Modified Microorganisms into the Environments (Russ.);Agrokhimia (Agric. Chem.) 8 80–90

    Google Scholar 

  • Velkov V V, Matys V Yu and Sokolov D M 1999 How Overproduction of foreign proteins affects physiology of recombinant strains ofHansenula polymorpha;J. Biosci. 24 279–286

    Article  CAS  Google Scholar 

  • Zavil’gel’skii G B 2000 Antirestriction (Russ.);Mol. Biol. (Mosk.) 34 854–862

    Google Scholar 

  • Zhu J, Oger P M, Schrammeijer B, Hooykaas P J, Farrand S K, Winans S C 2000 The bases of crown gall tumorigenesis;J. Bacteriol. 182 3885–3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velkov, V.V. Stress-induced evolution and the biosafety of genetically modified microorganisms released into the environment. J. Biosci. 26, 667–683 (2001). https://doi.org/10.1007/BF02704764

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704764

Keywords

Navigation