Skip to main content
Log in

Infectivity analysis of two variable DNA B components ofMungbean yellow mosaic virus-Vigna inVigna mungo andVigna radiata

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Mungbean yellow mosaic virus-Vigna (MYMV-Vig), aBegomovirus that causes yellow mosaic disease, was cloned from field-infected blackgram (Vigna mungo). One DNA A clone (KA30) and five different DNA B clones (KA21, KA22, KA27, KA28 and KA34) were obtained. The sequence identity in the 150-nt common region (CR) between DNA A and DNA B was highest (95%) for KA22 DNA B and lowest (85·6%) for KA27 DNA B. The Rep-binding domain had three complete 11 -nt (5’-TGTATCGGTGT-3′) iterons in KA22 DNA B (and KA21, KA28 and KA34), while the first iteron in KA27 DNA B (5’-ATCGGTGT-3’) had a 3-nt deletion. KA27 DNA B, which exhibited 93·9% CR sequence identity to the mungbean-infecting MYMV, also shared the 3-nt deletion in the first iteron besides having an 18-nt insertion between the third iteron and the conserved nonanucleotide. MYMV was found to be closely related to KA27 DNA B in amino acid sequence identity of BV1 (94·1%) and BC1 (97·6%) proteins and in the organization of nuclear localization signal (NLS), nuclear export signal (NES) and phosphorylation sites. Agroinoculation of blackgram (V. mungo) and mungbean (V. radiata) with partial dimers of KA27 and KA22 DNA Bs along with DNA A caused distinctly different symptoms. KA22 DNA B caused more intense yellow mosaic symptoms with high viral DNA titre in blackgram. In contrast, KA27 DNA B caused more intense yellow mosaic symptoms with high viral DNA titre in mungbean. Thus, DNA B of MYMV-Vig is an important determinant of host-range betweenV. mungo andV. radiata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CR:

Common region

ds:

double-stranded

kb:

kilobase pair(s)

kDa:

kiloDalton(s)

lin:

linear

MYMV-Vig:

Mungbean yellow mosaic virus-Vigna

NES:

nuclear export signal

NLS:

nuclear localization signal

nt:

nucleotide

oc:

open circular

OD:

optical density

ORF:

open reading frame

Rep:

replication-associated protein

RF:

replicative form

sc:

supercoiled

ss:

single-stranded

YMD:

yellow mosaic disease

References

  • An G, Watson B D, Stachel S, Gordon M P and Nester E W 1985 New cloning vehicles for transformation of higher plants;EMBO J. 4 277–284

    PubMed  CAS  Google Scholar 

  • Arguello-Astorga G, Herrera-Estrella L and Rivera-Bustamante R 1994a Experimental and theoretical definition of gemini-virus origin of replication;Plant Mol. Biol. 26 553–556

    Article  PubMed  CAS  Google Scholar 

  • Arguello-Astorga G R, Guevara-Gonzalez R G, Herrera-Estrella L R and Rivera-Bustamante R F 1994b Geminivirus replication origins have a group-specific organization of iterative elements: a model for replication;Virology 203 90–100

    Article  PubMed  CAS  Google Scholar 

  • Behjatnia S A A, Dry I B and Rezaian M A 1998 Identification of the replication-associated protein binding domain within the intergenic region of tomato leaf curl geminivirus;Nucleic Acids Res. 26 925–931

    Article  CAS  Google Scholar 

  • Bilang R, Kloti A, Schrott M and Potrykus I 1994 PEG-mediated direct gene transfer and electroporation; inPlant molecular biology manual (eds) S B Gelvin and R A Schilperoort (Dordrecht: Kluwer Academic Publishers) pp A1-A16

    Google Scholar 

  • Chatterji A, Padidam M, Beachy R N and Fauquet C M 1999 Identification of replication specificity determinants in two strains of tomato leaf curl virus from New Delhi;J. Virol. 73 5481–5489

    PubMed  CAS  Google Scholar 

  • Chilton M-D, Currier T C, Farrand S K, Bendich A J, Gordon M P and Nester E W 1974Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumours;Proc. Natl. Acad. Sci. USA 71 3672–3676

    Article  PubMed  CAS  Google Scholar 

  • Devereux J, Haeberli P and Smithies O 1984 A comprehensive set of sequence analysis programs for the VAX;Nucleic Acids Res. 12 387–395

    Article  PubMed  CAS  Google Scholar 

  • Ditta G, Stanfield S, Corbin D and Helinski D R 1980 Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank ofRhizobium meliloti;Proc. Natl. Acad. Sci. USA 77 7347–7351

    Article  PubMed  CAS  Google Scholar 

  • Eagle P A, Orozco B M and Hanley-Bowdoin L 1994 A DNA sequence required for geminivirus replication also mediates transcriptional regulation;Plant Cell 6 1157–1170

    Article  PubMed  CAS  Google Scholar 

  • Fauquet C M, Bisaro D M, Briddon R W, Brown J K, Harrison B D, Rybicki E P, Stenger D C and Stanley J 2003 Revision of taxonomic criteria for species demarcation in the familyGeminiviridae, and an updated list of begomovirus species;Arch. Virol. 148 405–421

    Article  PubMed  CAS  Google Scholar 

  • Fontes E P B, Luckow V A and Hanley-Bowdoin L 1992 A geminivirus replication protein is a sequence-specific DNA binding protein;Plant Cell 4 597–608

    Article  PubMed  CAS  Google Scholar 

  • Fontes E P B, Eagle P A, Sipe P S, Luckow V A and Hanley-Bowdoin L 1994a Interaction between a geminivirus replication protein and origin DNA is essential for viral replication;J. Biol. Chem. 269 8459–8465

    PubMed  CAS  Google Scholar 

  • Fontes E P B, Gladfelter H J, Schaffer R L, Petty I T D and Hanley-Bowdoin L 1994b Geminivirus replication origins have a modular organization;Plant Cell 6 405–416

    Article  PubMed  CAS  Google Scholar 

  • Hanley-Bowdoin L, Settlage S B, Orozco B M, Nagar S and Robertson D 1999 Geminiviruses: models for plant DNA replication, transcription and cell cycle regulation;Crit. Rev. Plant Sci. 18 71–106

    Article  CAS  Google Scholar 

  • Honda Y and Ikegami M 1986 Mungbean yellow mosaic virus;AAB Descriptions of Plant Viruses No. 323

  • Hong Y and Stanley J 1996 Virus resistance inNicotiana benthamiana conferred by African cassava mosaic virus replication-associated protein (AC1) transgene;Mol. Plant-Microbe Interact. 9 219–225

    Google Scholar 

  • Jacob S S, Vanitharani R, Karthikeyan A S, Chinchore Y, Thillaichidambaram P and Veluthambi K 2003Mungbean yellow mosaic virus-Vi agroinfection by codelivery of DNA A and DNA B from oneAgrobacterium strain;Plant Dis. 87 247–251

    Article  CAS  Google Scholar 

  • Karthikeyan A S, Vanitharani R, Balaji V, Anuradha S, Thillaichidambaram P, Shivaprasad P V, Parameswari C, Balamani V, Saminathan M and Veluthambi K 2004 Analysis of an isolate ofMungbean yellow mosaic virus (MYMV) with a highly variable DNA B component;Arch. Virol. 149 1643–1652

    Article  PubMed  CAS  Google Scholar 

  • Lazarowitz S G 1992 Geminiviruses: genome structure and gene function;Crit. Rev. Plant Sci. 11 327–349

    Article  CAS  Google Scholar 

  • Lazarowitz S G, Wu L C, Rogers S G and Elmer J S 1992 Sequence-specific interaction with the viral AL1 protein identifies a geminivirus DNA replication origin;Plant Cell 4 799–809

    Article  PubMed  CAS  Google Scholar 

  • Mandal B, Varma A and Malathi V G 1997 Systemic infection ofVigna mungo using the cloned DNAs of the blackgram isolate of mungbean yellow mosaic geminivirus through agroinoculation and transmission of the progeny virus by whiteflies;J. Phytopathol. 145 505–510

    Google Scholar 

  • Morinaga T, Ikegami M and Miura K 1993 The nucleotide sequence and genome structure of mungbean yellow mosaic geminivirus;Microbiol. Immunol. 37 471–476

    PubMed  CAS  Google Scholar 

  • Nene Y L 1973 Viral diseases of some warm weather pulse crops in India;Plant Dis. Rep. 57 463–467

    Google Scholar 

  • Nariani T K 1960 Yellow mosaic of mung (Phaseolus aureus L.);Indian Phytopathol. 13 24–29

    Google Scholar 

  • Padidam M, Beachy R N and Fauquet CM 1995 Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity;J. Gen. Virol. 76 25–35

    PubMed  CAS  Google Scholar 

  • Pant V, Gupta D, Choudhury N R, Malathi V G, Varma A and Mukherjee S K 2001 Molecular characterization of the Rep protein of the blackgram isolate of Indian mungbean yellow mosaic virus;J. Gen. Virol. 82 2559–2567

    PubMed  CAS  Google Scholar 

  • Pooggin M, Shivaprasad P V, Veluthambi K and Hohn T 2003 RNAi targeting of a DNA virus in plants;Nat. Biotechnol. 21 131–132

    Article  PubMed  CAS  Google Scholar 

  • Porebski S, Bailey L G and Baum B R 1997 Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components;Plant Mol. Biol. Rep. 15 8–15

    CAS  Google Scholar 

  • Sanderfoot A A, Ingham D J and Lazarowitz S G 1996 A viral movement protein as a nuclear shuttle. The geminivirus BR1 movement protein contains domains essential for interaction with BL1 and nuclear localization;Plant Physiol. 110 23–33

    Article  Google Scholar 

  • Sciaky D, Montoya A L and Chilton M-D 1978 Fingerprints ofAgrobacterium Ti plasmids;Plasmid 1 238–253

    Article  PubMed  CAS  Google Scholar 

  • Southern E M 1975 Detection of specific sequences among DNA fragments separated by gel electrophoresis;J. Mol. Biol. 98 503–517

    Article  PubMed  CAS  Google Scholar 

  • Stanley J 1985 The molecular biology of geminiviruses;Adv. Virus Res. 30 139–177

    Article  PubMed  CAS  Google Scholar 

  • Stanley J and Gay M R 1983 Nucleotide sequence of Cassava latent virus DNA;Nature (London) 301 260–262

    Article  CAS  Google Scholar 

  • Thompson J D, Higgins D G and Gibson T J 1994 CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice;Nucleic Acids Res. 22 4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tinland B, Koukolikova-Nicola Z, Hall M N and Hohn B 1992 The T-DNA linked VirD2 protein contains two distinct functional nuclear localization signals;Proc. Natl. Acad. Sci. USA 89 7442–7446

    Article  PubMed  CAS  Google Scholar 

  • Vanitharani R, Karthikeyan A S, Anuradha S and Veluthambi K 1996 Genome homologies among geminiviruses infectingVigna, cassava,Acalypha, Croton andVernonia;Curr. Sci. 70 63–69

    Google Scholar 

  • Varma A, Dhar A K and Mandal B 1992 MYMV transmission and control in India; inMungbean yellow mosaic disease (eds) S K Green and D Kim (Taipei: Asian Vegetable Research and Development Centre) pp 8–27

    Google Scholar 

  • Veluthambi K, Ream W and Gelvin S B 1988 Virulence genes, borders, and overdrive generate single-stranded T-DNA molecules from the A6 Ti plasmid ofAgrobacterium tumefaciens;J. Bacteriol. 170 1523–1532

    PubMed  CAS  Google Scholar 

  • Von Arnim A and Stanley J 1992 Determinants of tomato golden mosaic virus symptom development located on DNA B;Virology 186 286–293

    Article  Google Scholar 

  • Ward B M and Lazarowitz S G 1999 Nuclear export in plants: use of geminivirus movement proteins for a cell-based export assay;Plant Cell 11 1267–1276

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Veluthambi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balaji, V., Vanitharani, R., Karthikeyan, A.S. et al. Infectivity analysis of two variable DNA B components ofMungbean yellow mosaic virus-Vigna inVigna mungo andVigna radiata . J Biosci 29, 297–308 (2004). https://doi.org/10.1007/BF02702612

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02702612

Keywords

Navigation