Skip to main content
Log in

MART-1 adenovirus-transduced dendritic cell immunization in a murine model of metastatic central nervous system tumor

  • Tumor Immunology: Steps And Principles
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Summary

Dendritic cells (DCs) are potent antigen-presenting cells that have been shown to play a critical role in the initiation of host immune responses against tumor antigens. In this study, a recombinant adenovirus vector encoding the melanoma-associated antigen, MART-1, was used to transduce murine DCs, which were then tested for their ability to activate cytotoxic T lymphocytes (CTLs) and induce protective immunity against B16 melanoma tumor cells implanted intracranially.

Genetic modifications of murine bone marrow-derived DCs to express MART-1 was achieved through the use of an E1-deficient, recombinant adenovirus vector. Sixty-two C57BL/6 mice were immunized subcutaneously with AdVMART-1-transduced DCs (n=23), untransduced DCs (n=17), or sterile saline (n=22). Using the B16 murine melanoma, which naturally expresses the MART-1 antigen, all the mice were then challenged intracranially with viable, unmodified syngeneic B16 tumor cells 7 days later. Splenocytes from representative animals in each group were harvested for standard cytotoxicity (CTL) and enzyme-linked immunospot (ELISPOT) assays. The remaining mice were followed for survival.

Immunization of C57BL/6 mice with DCs transduced with an adenoviral vector encoding the MART-1 antigen elicited the development of antigen-specific CTL responses. As evidenced by a prolonged survival curve when compared to control-immunized mice with intracranial B16 tumors, AdMART-1-DC vaccination was able to elicit partial protection against central nervous system tumor challengein vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mellman I, Turley SJ, Steinman RM: Antigen processing for amateurs and professionals. Trends Cell Biol 8: 231–237, 1998

    Article  PubMed  CAS  Google Scholar 

  2. Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 392: 245–252, 1998

    Article  PubMed  CAS  Google Scholar 

  3. Pardoll DM: Cancer vaccines. Nat Med 4: 525–531, 1998

    Article  PubMed  CAS  Google Scholar 

  4. Schuler G, Steinman R: Dendritic cells as adjuvants for immune-mediated resistance to tumors. J Exp Med 186: 1183–1187, 1997

    Article  PubMed  CAS  Google Scholar 

  5. Rosenberg SA, Kawakami Y, Robbins PF et al.: Identification of the genes encoding cancer antigens: implications for cancer immunotherapy. Adv Cancer Res 70:145–177, 1996

    Article  PubMed  CAS  Google Scholar 

  6. Boon T, Cerottini JC, Van Der Bruggen P et al.: Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 12: 337–365, 1994

    Article  PubMed  CAS  Google Scholar 

  7. Bakker A, Marland G, de Boer A et al.: Generation of antimelanoma cytotoxic T lymphocytes from healthy donors after presentation of melanoma-associated antigen-derived epitopes by dendritic cellsin vitro. Cancer Res 55: 5330–5334, 1995

    PubMed  CAS  Google Scholar 

  8. Coulie PG, Brichard V, Van Pel A et al.: A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 180: 35–42, 1994

    Article  PubMed  CAS  Google Scholar 

  9. Kawakami Y, Eliyahu S, Delgado CH et al.: Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating tumor. Proc Natl Acad Sci USA 91: 3515–3519, 1994

    Article  PubMed  CAS  Google Scholar 

  10. Ribas A, Bui LA, Butterfield LH et al.: Antitumor protection using murine dendritic cells pulsed with acid-eluted peptides fromin vivo grown tumors of different immunogenicities. Anticancer Res 19: 1165–1170, 1999

    PubMed  CAS  Google Scholar 

  11. Zitvogel L, Mayordomo J, Tjandrawan T et al.: Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med 183: 87–97, 1996

    Article  PubMed  CAS  Google Scholar 

  12. Liau LM, Black KL, Prins RM et al.: Treatment of intracranial gliomas with bone marrow-derived dendritic cells pulsed with tumor antigens. J Neurosurg 90: 1115–1124, 1999

    Article  PubMed  CAS  Google Scholar 

  13. Celluzzi C, Mayordomo J, Storkus W et al.: Peptide-pulsed dendritic cells induce antigen-specific, CTL-mediated protective tumor immunity. J Exp Med 183: 283–287, 1996

    Article  PubMed  CAS  Google Scholar 

  14. Mayordomo J, Zorina T, Storkus W et al.: Bone marrow-derived dendritic cells pulsed with synthetic tumor peptides elicit protective and therapeutic antitumor immunity. Nat Med 1: 1297–1302, 1995

    Article  PubMed  CAS  Google Scholar 

  15. Paglia P, Chiodoni C, Rodolfo M et al.: Murine dendritic cells loadedin vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigenin vivo. J Exp Med 183: 317–322, 1996

    Article  PubMed  CAS  Google Scholar 

  16. Porgador A, Snyder D, Gilboa E: Induction of antitumor immunity using bone marrow-generated dendritic cells. J Immunol 156: 2918–2926, 1996

    PubMed  CAS  Google Scholar 

  17. Okada H, Tahara H, Shurin MR et al.: Bone marrow-derived dendritic cells pulsed with a tumor-specific peptide elicit effective anti-tumor immunity against intracranial neoplasms. Int J Cancer 78: 196–201, 1998

    Article  PubMed  CAS  Google Scholar 

  18. Boczkowski D, Nair S, Snyder D et al.: Dendritic cells pulsed with RNA are potent antigen-presenting cellsin vitro andin vivo. J Exp Med 184: 465–472, 1996

    Article  PubMed  CAS  Google Scholar 

  19. Ashley D, Faiola B, Nair S et al.: Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med 186: 1177–1182, 1997

    Article  PubMed  CAS  Google Scholar 

  20. Nair SK, Boczkowski D, Snyder D et al.: Antigen-presenting cells pulsed with tumor unfractionated tumor-derived peptides are potent tumor vaccines. Eur J Immunol 27: 589–597, 1997

    Article  PubMed  CAS  Google Scholar 

  21. Heimberger AB, Crotty LE, Archer GE et al.: Bone marrow-derived dendritic cells pulsed with tumor homogenates induce immunity against syngeneic intracerebral glioma. J Neuroimmunol 103: 16–25, 2000

    Article  PubMed  CAS  Google Scholar 

  22. Arthur JF, Butterfield LH, Roth MD et al.: A comparison of gene transfer methods in human dendritic cells. Cancer Gene Ther 4: 17–25, 1997

    PubMed  CAS  Google Scholar 

  23. Bossart P, Goldrath AW, Butz EA et al.: Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL. J Immunol 158: 3270–3276, 1997

    Google Scholar 

  24. Specht JM, Wang G, Do MT et al.: Dendritic cells retrovirally transduced with a model tumor antigen gene are therapeutically effective against established pulmonary metastases. J Exp Med 186: 1213–1221, 1997

    Article  PubMed  CAS  Google Scholar 

  25. Reeves ME, Royal RE, Lam JS et al.: Retroviral transduction of human dendritic cells with a tumor-associated antigen gene. Cancer Res 56: 5672–5677, 1996

    PubMed  CAS  Google Scholar 

  26. Ribas A, Butterfield LH, McBride WH et al.: Genetic immunization for the melanoma antigen MART-1/Melan-A using recombinant adenovirus-transduced murine dendritic cells. Cancer Res 57: 2865–2869, 1997

    PubMed  CAS  Google Scholar 

  27. Hirschowitz EA, Weaver JD, Hidalgo GE et al.: Murine dendritic cells infected with adenovirus vectors show signs of activation. Gene Ther 7: 1112–1120, 2000

    Article  PubMed  CAS  Google Scholar 

  28. Song W, Kong H-L, Carpenter H et al.: Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity. J Exp Med 186: 1247–1256, 1997

    Article  PubMed  CAS  Google Scholar 

  29. Butterfield LH, Jilani SM, Chakraborty NG et al.: Generation of melanoma-specific cytotoxic T lymphocytes by dendritic cells transduced with a MART-1 adenovirus. J Immunol 161: 5607–5613, 1998

    PubMed  CAS  Google Scholar 

  30. Ribas A, Butterfield LH, Hu B et al.: Generation of T-cell immunity to a murine melanoma using MART-1-engineered dendritic cells. J Immunother 23: 59–66, 2000

    Article  PubMed  CAS  Google Scholar 

  31. Lampson L: Basic principles of CNS immunology. In: Youmans J (ed) Neurological Surgery. W.B. Saunders Company, Philadelphia, 2003 (in press)

    Google Scholar 

  32. Fidler IJ, Schackert G, Zhang RD et al.: The biology of melanoma brain metastasis. Cancer Metastasis Rev 18: 387–400, 1999

    Article  PubMed  CAS  Google Scholar 

  33. Inaba K, Inaba M, Romani N et al.: Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176: 1693–1702, 1992

    Article  PubMed  CAS  Google Scholar 

  34. Inaba K, Witmer-Pack M, Inaba M et al.: The tissue distribution of the B7-2 costimulator in mice: abundant expression on dendritic cellsin situ and during maturationin vitro. J Exp Med 180: 1849–1860, 1994

    Article  PubMed  CAS  Google Scholar 

  35. Vollmer CM, Eilber FC, Butterfield LH et al.: Alpha-fetoprotein-specific genetic immunotherapy for hepatocellular carcinoma. Cancer Res 59: 3064–3067, 1999

    PubMed  CAS  Google Scholar 

  36. Ribas A, Butterfield LH, Hu B et al.: Immune deviation and Fas-mediated deletion limit antitumor activity after multiple dendritic cell vaccinations in mice. Cancer Res 60: 2218–2224, 2000

    PubMed  CAS  Google Scholar 

  37. Kaplan JM, Yu Q, Piraino ST et al.: Induction of antitumor immunity with dendritic cells transduced with adenovirus vector-encoding endogenous tumor-associated antigens. J Immunol 163: 699–707, 1999

    PubMed  CAS  Google Scholar 

  38. Murali-Krishna K, Altman JD, Suresh M et al.: Counting antigen-specific CD8 T cells: a re-evaluation of bystander activation during viral infection. Immunity 8: 177–187, 1998

    Article  PubMed  CAS  Google Scholar 

  39. Perez-Diez A, Butterfield LH, Li L et al.: Generation of CD8+ and CD4+ T-cell response to dendritic cells genetically engineered to express the MART-1/Melan-A gene. Cancer Res 58: 5305–5309, 1998

    PubMed  CAS  Google Scholar 

  40. Gordon LB, Nolan SC, Cserr HF et al.: Growth of P511 mastocytoma cells in BALB/c mouse brain elicits CTL response without tumor elimination. J Immunol 159: 2399–2408, 1997

    PubMed  CAS  Google Scholar 

  41. Anichini A, Molla A, Mortarini R et al.: An expanded peripheral T cell population to a cytotoxic T lymphocyte (CTL)-defined, melanocyte-specific antigen in metastatic melanoma patients impacts on generation of peptide-specific CTLs but does not overcome tumor escape from immune surveillance in metastatic lesions. J Exp Med 190: 651–667, 1999

    Article  PubMed  CAS  Google Scholar 

  42. Murphy JB, Strum E: Conditions determining the transplantability of tissues in the brain. Rockefeller Inst Med Res 21: 183–197, 1926

    Google Scholar 

  43. Mitchell MS: Relapse in the central nervous system in melanoma patients successfully treated with biomodulators. J Clin Oncol 7: 1701–1709, 1989

    PubMed  CAS  Google Scholar 

  44. Grooms GA, Eilber FR, Morton DL: Failure of adjuvant immunotherapy to prevent central nervous system metastases in malignant melanoma patients. J Surg Oncol 9: 147–153, 1977

    Article  PubMed  CAS  Google Scholar 

  45. Heimberger AB, Bigner DD, Sampson JH: Biological principles of brain tumor immunotherapy. In: Liau LM, Becker DP, Cloughesy TF et al. (eds) Brain Tumor Immunotherapy. Humana Press, Totowa, NJ, 2000, pp 101–130

    Chapter  Google Scholar 

  46. De Micco C: Immunology of the central nervous system. J Neuroimmunol 25: 93–108, 1989

    Article  PubMed  Google Scholar 

  47. Zhai Y, Yang JC, Spiess P et al.: Cloning and characterization of the genes encoding the murine homologues of the human melanoma antigens MART1 and gp100. J Immunother 20: 15–25, 1997

    Article  PubMed  CAS  Google Scholar 

  48. Matzinger P: Tolerance, danger, and the extended family. Annu Rev Immunol 12: 991–1045, 1994

    PubMed  CAS  Google Scholar 

  49. Morgan DJ, Kreuwel HT, Fleck S et al.: Activation of low avidity CTL specific for a self epitope results in tumor rejection but not autoimmunity. J Immunol 160: 643–651, 1998

    PubMed  CAS  Google Scholar 

  50. Gong J, Chen D, Kashiwaba M et al.: Reversal of tolerance to human MUC1 antigen in MUC1 transgenic mice immunized with fusions of dendritic and carcinoma cells. Proc Natl Acad Sci USA 95: 6279–6283, 1998

    Article  PubMed  CAS  Google Scholar 

  51. Vierboom MP, Nijman HW, Offringa R et al.: Tumor eradication by wild-type p53-specific cytotoxic T lymphocytes. J Exp Med 186: 695–704, 1997

    Article  PubMed  CAS  Google Scholar 

  52. Zou J, Shimizu J, Ikegame K, et al.: Tumor-bearing mice exhibit a progressive increase in tumor antigen-presenting cell function and a reciprocal decrease in tumor antigen-responsive CD4+ T-cell activity. J Immunol 148: 648–655, 1992

    PubMed  CAS  Google Scholar 

  53. Lampson L, Lampson M, Dunne A: Exploiting the lacZ reporter gene for quantitative analysis of disseminated tumor growth within the brain: use of the lacZ gene product as a tumor antigen, for evaluation of antigenic modulation, and to facilitate image analysis of tumor growthin situ. Cancer Res 53: 176–182, 1993

    PubMed  CAS  Google Scholar 

  54. Anichini A, Mortarini R, Maccalli C et al.: Cytotoxic T cells directed to tumor antigens not expressed on normal melanocytes dominate HLA-A2.1-restricted immune repertoire to melanoma. J Immunol 156: 208–217, 1996

    PubMed  CAS  Google Scholar 

  55. Johnston JV, Malacko AR, Mizuno MT et al.: B7-CD28 costimulation unveils the hierarchy of tumor epitopes recognized by major histocompatibility complex class I-restricted cytolytic T lymphocytes. J Exp Med 183: 791–800, 1996

    Article  PubMed  CAS  Google Scholar 

  56. Sampson JH, Archer GE, Ashley DM et al.: Subcutaneous vaccinations with irradiated, cytokine-producing tumor cells stimulates CD8+ cell-mediated immunity against tumors located in the ‘immunologically privileged’ central nervous system. Proc Natl Acad Sci USA 93: 10399–10404, 1996

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda M. Liau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broder, H., Anderson, A., Kremen, T.J. et al. MART-1 adenovirus-transduced dendritic cell immunization in a murine model of metastatic central nervous system tumor. J Neuro-Oncol 64, 21–30 (2003). https://doi.org/10.1007/BF02700017

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02700017

Key words

Navigation