Skip to main content
Log in

Transition velocity and bed expansion of two-phase (liquid-solid) fluidization systems

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hydrodynamic transition experiments for two-phase (liquid-solid), both upward and downward, liquid flow systems were performed in a 127-mm diameter column. The particles were 3.2-mm polymer (1,280 kg/m3), 5.8mm polyethylene (910, 930, 946 kg/m3), 5.5-mm polystyrene (1,021 kg/m3) and 6.0-mm glass (2,230 kg/m3) spheres, with water, aqueous glycerol solution and silicone oil as liquids. The dimensionless pressure gradient increases initially with increasing liquid velocity, but decreases gradually with increasing liquid velocity beyond Ulmf due to bed expansion. The non-dimensionalized pressure gradient using the liquid/solid mixture density increases with increasing liquid velocity and then reaches a constant value close to unity beyond Ulmf. The minimum fluidization Reynolds number for liquid-solid system increases with increasing Archimedes number including both heavier and lighter than the density of the liquid phase. Ulmf should be the same for both upward and downward fluidization systems since the Ergun equation is based on the main assumption that drag force of the superficial liquid velocity, Ulmf, is equal to the net difference between gravitational and buoyancy forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, B.,“Biological Fluidized bed Treatment of Water and Wastewater,” Cooper, P. F. and Atkinson, B., eds., Horwood, E., Chichester, U.K. (1981).

    Google Scholar 

  • Begovich, J. M. and Watson, J. S.,“Hydrodynamic Characteristics of Three-Phase Fluidized Beds,” in Fluidization, Davidson, J. F. and Keairns, D. L., eds., Cambridge Univ. Press, U.K. (1978).

    Google Scholar 

  • Choi, H. S. and Shin, M. S.,“Hydrodynamics Study of Two Different Inverse Fluidized Reactors for the application of Wastewater Treat-Ment;Korean J. Chem. Eng.,16, 670 (1999).

    CAS  Google Scholar 

  • Endo, I., Nagamune, T., Tachi, K. and Kobayashi, T.,“Fluidized Bed Bioreactor: Antibiotic Production,” Abstr. Int. Biotechnol. Symp., Paris, France,37 (July 17–22,1988).

  • Epstein, N, Leclair, B. P. and Pruden, B. B.,“Liquid Fluidization of Binary Particle Mixtures-I. Overall Bed Expansion,”Chem. Eng. Sci.,36, 1803 (1981).

    Article  CAS  Google Scholar 

  • Ergun, S.,“Fluid Flow Through Packed Columns,”Chem. Eng. Prog.,48, 89 (1952).

    CAS  Google Scholar 

  • Fan, L.-S., Matsuura, A. and Chern, S.-H.,“Hydrodynamic Characteristics of a Gas-Liquid-Solid Fluidized Bed Containing a Binary Mixture of Particles,”AIChE J.,31,1801 (1985).

    Article  CAS  Google Scholar 

  • Fan, L.-S., Muroyama, K. and Chern, S.-H.,“Hydrodynamic Characteristics of Inverse Fluidization in Liquid-Solid and Gas-Liquid-solid Systems,”Chem. Eng. J.,24, 43 (1982).

    Google Scholar 

  • Garnier, A., Chavaria, C., Andre, G. and Klvana, D.,“The Inverse Fluidization Airlift Bioreactor: 1 Hydrodynamic Studies,”Chem. Eng. Comm.,98, 31 (1990).

    Article  CAS  Google Scholar 

  • Grace, J. R.,“Fluidized Bed Hydrodynamics,” Chap. 8.1 in Handbook of Multiphase Systems, Hetsroni, ed., Hemisphere Publishing Corp., Washington (1982).

    Google Scholar 

  • Jeris, J. S., Owens, R. W. and Flood, F.,“Secondary Treatment of Municipal Wastewater with Fluidized Bed Technology,” Biological Fluidized Bed Treatment of Water and Wastewater, Cooper, P. F. and Atkinson, B., eds., Horwood, E., Chichester, U.K. (1981).

    Google Scholar 

  • Jewell, W. J., Switzenbaum, M. S. and Morris, J. W.,“Municipal Waste-water Treatment with the Anaerobic Attached Microbial Film Expanded Bed Process,”J. Water Poll. Control Fed.,53, 482 (1981).

    Google Scholar 

  • Karamanev, D. G. and Nikolov, L. N.,“Bed Expansion of Liquid-Solid Inverse Fluidization,”AIChE J.,38, 1916 (1992).

    Article  CAS  Google Scholar 

  • Kwauk, M.,“Fluidization: Idealized and Bubbleless, with Applications,” Science Press, Beijing (1992).

    Google Scholar 

  • Lee, D. H., Epstein, N. and Grace, J. R.,“Models for Minimum Liquid Fluidization Velocity of Gas-Liquid Fluidized Beds,” Proc. 8th APCChE Congress,3, 1699 (1999).

    Google Scholar 

  • Lee, D. H., Epstein, N. and Grace, J. R.,“Hydrodynamic Transition from Fixed to Fully Fluidized Beds for Three-Phase Inverse Fluidization,”Korean J. Chem. Eng.,17, 684 (2000a).

    CAS  Google Scholar 

  • Lee, D. H., Macchi, A., Epstein, N. and Grace, J. R., “Transition Velocities and Phase Holdups at Minimum Fluidization in Gas-Liquid-Solid Systems,” Can. J. Chem. Eng., in press (2000b).

  • Livingston, A. G. and Chase, H. A.,“Modeling Phenol Degradation in a Fluidized-Bed Bioreactor,”AIChE J.,35, 1986 (1989).

    Article  Google Scholar 

  • Nikolov, L. N. and Karamanev, D. G.,“Experimental Study of Inverse Fluidized Bed Biofilm Reactor,”Can. J. Chem. Eng.,65, 214 (1987).

    CAS  Google Scholar 

  • Nikolov, L. N. and Karamanev, D. G.,“The Inverse Fluidized Bed Biofilm Reactor: A New Laboratory Scale Apparatus for Biofilm Research,”J. Ferm. Bioeng.,69, 265 (1990).

    Article  CAS  Google Scholar 

  • Oh, D. K., Hyun, C. K., Kim, J. H. and Park, Y H., “Traduction of Penicillin in a Fluidized Bed Bioreactor,”Biotechnol. Bioeng.,32, 569 (1988).

    Article  CAS  Google Scholar 

  • Richardson, J. F. and Zaki, W. N.,“Sedimentation and Fluidization,”Trans. Instn. Chem. Engrs.,32, 35 (1954).

    CAS  Google Scholar 

  • Richardson, J. F.,“Incipient Fluidization and Particulate Systems,” Chap. 2 in Fluidization, Davidson, J. F. and Harrison, D., eds., Academic Press, New York (1971).

    Google Scholar 

  • Shugerl, K.,“Biofluidization: Application of the Fluidization Technique in Biotechnology,”Can. J. Chem. Eng.,67, 178 (1989).

    Article  Google Scholar 

  • Tang, W. T. and Fan, L.-S.,“Steady-State Phenol Degradation in a Draft Tube, Gas-Liquid-Solid Fluidized-Bed Bioreactor,”AIChE. J.,33, 239 (1987).

    Article  CAS  Google Scholar 

  • Wen, C. Y. and Yu, Y. H.,“Mechanics of Fluidization;Chem. Eng. Prog. Symp. Ser,62(62), 100 (1966a).

    CAS  Google Scholar 

  • Wen, C. Y. and Yu, Y. H.,“A Generalized Method for Predicting the Minimum Fluidization Velocities,”AIChE J.,12, 610 (1966b).

    Article  CAS  Google Scholar 

  • Wilhelm, R. H. and Kwauk, M.,“Fluidization of Solid Particles,”Chem. Eng. Prog.,44, 201 (1948).

    CAS  Google Scholar 

  • Zhang, J. P., Epstein, N., Grace, J. R. and Zhu, J.,“Minimum Liquid Fluidization Velocity of Gas-Liquid Fluidized Beds,”Chem. Eng. Res. Des.,73, 347 (1995).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Hyun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.H. Transition velocity and bed expansion of two-phase (liquid-solid) fluidization systems. Korean J. Chem. Eng. 18, 347–351 (2001). https://doi.org/10.1007/BF02699176

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02699176

Key words

Navigation