Skip to main content
Log in

Role of particle size on latex deformation during film formation

  • Technical Articles
  • Published:
Journal of Coatings Technology

Abstract

The ability of latex particles to deform and coalesce to form an integral film upon drying is an important property in many latex coating applications. Many theories have been proposed to account for the origin of the deformation forces. The capillary forces which depend inversely on particle size have been accepted as important for latex deformation and film formation. The minimum film forming temperature (MFFT) has been found to be a function of the particle size of latexes and has been used as evidence that the capillary forces are responsible for film formation.

In this study, the deforming force at MFFT has been determined from the moduli of water-equilibrated latex polymers. No particle size dependence was observed. The magnitude of the deforming forces was at least an order of magnitude lower than that predicted by the capillary force theory. Electron microscopy of film formed below the MFFT, a condition that corresponds to early stage film formation, showed significant deformation, indicating that at the beginning of film formation, forces of magnitude predicted by the capillary force theory are present. However, the magnitude of the forces decreases rapidly as film formation progresses. The MFFT particle size dependency can be explained by the difference in the degree of water plasticization. Evidence that latexes of different particle size were plasticized by water to different extents was determined from the Tgs of the latex emulsions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dobler, F. and Holl, Y.,Trends Polymer. Sci., 4 (5), 145 (1996).

    CAS  Google Scholar 

  2. Winnik, M.A., inEmulsions Polymerization and Emulsion Polymers, Lovell, P.A. and El-Aasser, M. (Eds.), John Wiley, New York, 1997.

    Google Scholar 

  3. Visschers, M., Laven, J., and German, A.L.,Prog. Org. Coat., 30, 39 (1997).

    Article  CAS  Google Scholar 

  4. Keddie, J.L.,Materials Sci. Eng., R21 (3), 101 (1997).

    Article  CAS  Google Scholar 

  5. Joanicot, M., Wong, K., Maquet, J., Chevalier, Y., Pichot, C., Graillat, C., Lindner, P., Rios, L., and Cabane, B.,Prog. Colloid Polymers Sci., 81, 175 (1990).

    Article  CAS  Google Scholar 

  6. Crowley, T.L., Sanderson, A.R., Morrison, J.D., Barry, M.D., Morton-Jones, A.J., and Rennie, A.R.,Langmuir, 8, 2110 (1992).

    Article  CAS  Google Scholar 

  7. Joanicot, M., Wong, K., and Cabane, B.,Macromolecules, 29, 4976 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Dongenouts, N., Pulina, T., and Ballauff, M.,Macromolecules, 27, 6133 (1994).

    Article  ADS  Google Scholar 

  9. Wang, Y., Juhue, D., Winnik, M.A., Leung, O.M., and Goh, M.C.,Langmuir, 8, 760 (1992).

    Article  CAS  Google Scholar 

  10. Granier, V., Sartre, A., and Joanicot, M.,J. Adhesion, 42, 255 (1993).

    Article  CAS  Google Scholar 

  11. Butt, H.J., Kuropka, R., and Christensen, B.,Colloid Polymer Sci., 272, 1218 (1994).

    Article  CAS  Google Scholar 

  12. Lange, J., Mason, J.-A.E., and Hult, A., “Defects in Solvent-Free Organic Coatings Studied by Atomic Force Microscopy, Scanning Acoustic Microscopy, and Confocal Laser Microscopy,”Journal of Coatings Technology,66, No. 838, 19 (1994).

    CAS  Google Scholar 

  13. Granier, V. and Sarte, A.,Langmuir, 11, 2179 (1995).

    Article  CAS  Google Scholar 

  14. Rynders, R.M., Hegedus, C.R., and Gilicinski, A.G., “Characterization of Particle Coalescence in Waterborne Coatings Using Atomic Force Microscopy,”Journal of Coatings Technology, 67, No. 845, 59 (1995).

    CAS  Google Scholar 

  15. Lin, F. and Meier, D.J.,Langmuir, 11, 2726 (1995).

    Article  CAS  Google Scholar 

  16. Dillon, W.E., Matheson, D.A., and Bradford, E.B.,J. Colloid Sci., 6, 108 (1951).

    Article  CAS  Google Scholar 

  17. Brown, G.L.,J. Polymer Sci., 22, 423 (1956).

    Article  CAS  Google Scholar 

  18. Vanderhoff, J.W., Tarkowski, H.L., Jenkins, M.C., and Bradford, E.B.,J. Macromol. Chem., 1, 361 (1966).

    CAS  Google Scholar 

  19. Sheetz, D.P.,J. Appl. Polymer Sci., 9, 3759 (1965).

    Article  CAS  Google Scholar 

  20. Kendall, K. and Padget, J.C.,Intern. J. Adhesion Adhesives, 2, 149 (1982).

    Article  CAS  Google Scholar 

  21. Brodnyan, J.G. and Konen, T.,J. Appl. Polymer Sci., 8, 687 (1964).

    Article  CAS  Google Scholar 

  22. Eckersley, S.T. and Rudin, A., “Mechanism of Film Formation from Polymer Latexes,”Journal of Coatings Technology,62, No. 780, 89 (1990).

    CAS  Google Scholar 

  23. Jensen, D.P. and Morgan, L.W.,J. Appl. Polymer Sci., 42, 2845 (1991).

    Article  CAS  Google Scholar 

  24. Sperry, P.R., Synder, B.S., O’Dowd, M.L., and Lesko, P.M.,Langmuir, 10 (8), 2619 (1994).

    Article  CAS  Google Scholar 

  25. Dobler, F., Pith, T., Lambla, M., and Holl, Y.,J. Coll. Interf. Sci., 152, 12 (1992).

    Article  CAS  Google Scholar 

  26. Kan, C.S.,Proc. TAPPI Adv. Coating Fund. Sym., 101 (1993).

  27. Eckersley, S.T. and Rudin, A.,J. Appl. Polymer Sci., 48, 1369 (1993).

    Article  CAS  Google Scholar 

  28. Heymans, D.M.C. and Daniel, M.F.,Polymer Adv. Technol., 6, 291 (1995).

    Article  CAS  Google Scholar 

  29. Lee, D.I., Walker, L.C., and Kan, C.S.,Macromol. Sym., 118, 267 (1997).

    CAS  Google Scholar 

  30. Li, W.,TuLiao Concve, 90, 1 (1986).

    CAS  Google Scholar 

  31. Smith, A. and Wagner, O., “Factors Affecting Dirt Pickup in Latex Coatings,”Journal of Coatings Technology,68, No. 862, 37 (1996).

    CAS  Google Scholar 

  32. Protzman, T.F. and Brown, G.L.,J. Appl. Polymer Sci., 4, 81 (1960).

    Article  CAS  Google Scholar 

  33. Kan, C.S., unpublished results.

  34. Nielsen, L.E.,Mechanical Properties of Polymers and Composites, Vol. 1, Marcel Dekker, New York, 1974.

    Google Scholar 

  35. Butt, H.J., Kuropka, R., and Christensen, B.,Colloid Polymer Sci., 272, 1218 (1994).

    Article  CAS  Google Scholar 

  36. Mason, G.,Brit. Polymer J., 5, 101 (1973).

    Article  Google Scholar 

  37. Kan, C.S. and Blackson, J.H.,Macromolecules, 29, 21, 6853 (1996).

    Article  ADS  CAS  Google Scholar 

  38. Keddie, J.L., Jones, R.A.L., and Corey, R.A.,Europhys. Lett., 27, 1, 59 (1994).

    Article  ADS  CAS  Google Scholar 

  39. Forrest, J.A., Dalnoki-Veress, K., Stevens, J.R., and Dutcher, J.R.,Phys. Rev. Lett., 77, 10, 2002 (1996).

    Article  PubMed  ADS  CAS  Google Scholar 

  40. Meyers, G.F., DeKoven, B.M., and Seitz, J.T.,Langmuir, 8, 2330 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Emusion Polymers Research 1604 Building, Midland, MI 48674.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kan, C.S. Role of particle size on latex deformation during film formation. Journal of Coatings Technology 71, 89–97 (1999). https://doi.org/10.1007/BF02698388

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698388

Keywords

Navigation