Skip to main content
Log in

A general method for estimation of fracture surface roughness: Part I. Theoretical aspects

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

An assumption-free general method is developed for quantitative estimation of fracture surface roughness from the measurements performed on the fracture profiles generated by sectioning planes which are normal to the average topographic plane of the fracture surface. The input data are the profile roughness parameter,R L, and angular orientation distribution of line elements on the fracture profile,f(α). It is shown that

$$R_S = \overline {R_L \cdot \psi } $$

whereR S is the fracture surface roughness parameter andψ is the profile structure factor, which is completely determined by the profile orientation distribution function,f(α).R L · ψ is the expected value of the productR L · ψ on a set of sectioning planes normal to the average topographic plane of the fracture surface; measurement ofR L andψ on few such sectioning planes can give a reliable estimate of the fracture surface roughness,R S. The result is geometrically general, and it is applicable to fracture surfaces of any arbitrary complexity and anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. El-Soudani:Metallography, 1978, vol. 11, pp. 247–336.

    Article  Google Scholar 

  2. E.E. Underwood:Applied Metallography, G. Vander Voort, ed., Van Nostrand Reinhold Co., 1986, pp. 101–21.

  3. E.E. Underwood and K. Banerji:ASM Metals Handbook, 9th ed., ASM, Metals Park, OH, 1987, vol. 12, pp. 193–210.

    Google Scholar 

  4. J.R. Pickens and J. Gurland:Proc. 4th Int. Congr. for Stereology, E.E. Underwood, R. deWit, and G.A. Moore, eds., NBS Spec. Publ. 431, Gaithersburg, MD, 1976, pp. 269–72.

  5. K. Banerji:Metall. Trans. A, 1988, vol. 19, pp. 264–71.

    Google Scholar 

  6. M. Coster and J.L. Chermant:Int. Met. Rev., 1983, vol. 28, pp. 228–50.

    Google Scholar 

  7. K. Wright and B. Karlsson:J. Microsc., 1983, vol. 130, pp. 37–51.

    Google Scholar 

  8. A.M. Gokhale and E.E. Underwood:Acta Stereol., 1989, vol. 8, pp. 43–52.

    Google Scholar 

  9. S. Gentier and J. Riss:Acta Stereol., 1987, vol. 6, pp. 223–28.

    Google Scholar 

  10. C.S. Smith and L. Guttman:Trans. AIME, 1953, vol. 197, pp. 81–92.

    Google Scholar 

  11. E.E. Underwood:Quantitative Stereology, Addison-Wesley Publishing Co., Reading, MA, 1970.

    Google Scholar 

  12. A.J. Baddeley, H.J.G. Gundersen, and L. Cruz-Orive:J. Microsc., 1986, vol. 142, pp. 259–76.

    CAS  Google Scholar 

  13. K. Banerji and E.E. Underwood:Microstruct. Sci., 1985, vol. 13, pp. 537–51.

    Google Scholar 

  14. K. Banerji and E.E. Underwood:Acta Stereol., 1983, vol. 2, suppl. 1, pp. 65–70.

    Google Scholar 

  15. A.M. Gokhale and K. Banerji:Microstruct. Sci., 1989, vol. 17, pp. 67–79.

    CAS  Google Scholar 

  16. E.E. Underwood and S.B. Chakrabortty: ASTM STP 733, ASTM, Philadelphia, PA, 1981, pp. 337–54.

  17. A.M. Gokhale and W.J. Drury:Metall. Trans. A, 1990, vol. 21A, pp. 1201–07.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gokhale, A.M., Underwood, E.E. A general method for estimation of fracture surface roughness: Part I. Theoretical aspects. Metall Trans A 21, 1193–1199 (1990). https://doi.org/10.1007/BF02698249

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698249

Keywords

Navigation